Skip to main content

Advertisement

Log in

Optimal Energy Efficiency Distributed Relay Decision in UAV Swarms

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper studies the UAV swarm energy optimization problem. The energy consumption is critical for the UAV swarm, which limited the operating time of the whole system. Cooperative relaying could increase energy efficiency (EE) in UAV swarm communications. Due to UAV swarm’s high dynamism on outside environment and its own inside topology, the central optimization approach may bring extremely high complexity and large control cost. We solve the UAV swarm energy optimization problem by using game theory and distributed learning algorithm. First, we propose a distributed optimal EE UAV relay game model, and prove that the proposed game is an exact potential game. Second, we design a distributed UAV relay decision algorithm to obtain the optimal solution to the UAV swarm energy optimization problem. Finally, simulation results verify the theoretic analysis and show that the proposed approach could achieve optimal EE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang, B., Bishop, A. N., Anderson, B. D., & Drake, S. P. (2015). Optimal path planning and sensor placement for mobile target detection. Automatica, 60, 127–139.

    Article  MathSciNet  MATH  Google Scholar 

  2. Jadaliha, M., & Choi, J. (2013). Environmental monitoring using autonomous aquatic robots: Sampling algorithms and experiments. IEEE Transactions on Control Systems Technology, 21, 899–905.

    Article  Google Scholar 

  3. La, H. M., Sheng, W., & Chen, J. (2015). Cooperative and active sensing in mobile sensor networks for scalar field mapping. IEEE Transactions on Systems, Man, and Cybernetics, 45, 1–12.

    Article  Google Scholar 

  4. La, H. M., & Sheng, W. (2013). Distributed sensor fusion for scalar field mapping using mobile sensor networks. IEEE Transactions on Cybernetics, 43, 766–778.

    Article  Google Scholar 

  5. Franchi, A., Secchi, C., Ryll, M., Bulthoff, H. H., & Giordano, P. R. (2012). Shared control: Balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE Robotics & Automation Magazine, 19(3), 57–68.

    Article  Google Scholar 

  6. Shin, H. S., & Gasco, P. S. (2014). UAV swarms: Decision-making paradigms. Encyclopedia of Aerospace Engineering. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470686652.eae273.

  7. Purohit, A., Sun, Z., & Zhang, P. (2013). Sugarmap: Location-less coverage for micro-aerial sensing swarms. In Proceedings of ACM international conference on information processing in sensor networks, pp. 253–264.

  8. Wang, H., Huo, D., & Alidaee, B. (2014). Position unmanned aerial vehicles in the mobile ad hoc network. Journal of Intelligent & Robotic Systems, 74(1/2), 455–464.

    Article  Google Scholar 

  9. Burdakov, O., Doherty, P., Holmberg, K., & Olsson, P.-M. (2010). Optimal placement of UV-based communications relay nodes. Journal of Global Optimization, 48(4), 511–531.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhan, P., Yu, K., & Swindlehurst, A. (2011). Wireless relay communications with unmanned aerial vehicles: Performance and optimization. IEEE Transactions on Aerospace and Electronic Systems, 47(3), 2068–2085.

    Article  Google Scholar 

  11. Ni, W., Collings, I. B., & Liu, R. P. (2013). Decentralized user-centric scheduling with low rate feedback for mobile small cells. IEEE Transactions on Wireless Communications, 12(12), 6106–6120.

    Article  Google Scholar 

  12. Peng, L., Lipinski, D., & Mohseni, K. (2014). Dynamic data driven application system for plume estimation using UAVs. Journal of Intelligent & Robotic Systems, 74(1/2), 421–436.

    Article  Google Scholar 

  13. Ono, F., Ochiai, H., & Miura, R. (2016). A wireless relay network based on unmanned aircraft system with rate optimization. IEEE Transactions on Wireless Communications, 15(11), 7699–7708.

    Article  Google Scholar 

  14. Wu, Y. L., Zhang, B., Yang, S. S., Yi, X. D., & Yan, X. J. (2017). Energy-efficient joint communication-motion planning for relay-assisted wireless robot surveillance. In INFOCOM 2017.

  15. Li, K., Ni, W., Wang, X., Liu, R. P., Kanhere, S. S., & Jha, S. (2016). Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE Transactions on Mobile Computing, 15(6), 1377–1386.

    Article  Google Scholar 

  16. Fudenberg, D., & Levine, D. K. (1998). The theory of learning in games. Cambridge: The MIT Press.

    MATH  Google Scholar 

  17. Stuber, G. (2001). Principles of mobile communications (2nd ed.). Norwell, MA: Kluwer.

    MATH  Google Scholar 

  18. Marden, J., Arslan, G., & Shamma, J. (2009). Cooperative control and potential games. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 39(6), 1393–1407.

    Article  Google Scholar 

  19. Maskery, M., Krishnamurthy, V., & Zhao, Q. (2009). Decentralized dynamic spectrum access for cognitive radios: Cooperative design of a noncooperative game. IEEE Transactions on Communications, 57(2), 459–469.

    Article  Google Scholar 

  20. Altman, E., Jimenez, T., Vicuna, N., & Marquez, R. (2008). Coordination games over collision channels. In Proceedings of WiOPT, pp. 523–527.

  21. Zhong, W., Xu, Y., & Tianfield, H. (2011). Game-theoretic opportunistic spectrum sharing strategy selection for cognitive MIMO multiple access channels. IEEE Transactions on Signal Processing, 59(6), 2745–2759.

    Article  MathSciNet  MATH  Google Scholar 

  22. van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Holland: Reidel.

    Book  MATH  Google Scholar 

  23. Young, H. P. (1998). Individual strategy and social structure. Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (No. 61702543, 61271254, 71501186 and 71401176), the Natural Science Foundation of Jiangsu Province of China (No. BK20141071, BK20140065), the 333-high-level talent training project of Jiangsu Province of China (No. BRA 2016542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Yao, C. & Wang, L. Optimal Energy Efficiency Distributed Relay Decision in UAV Swarms. Wireless Pers Commun 102, 2997–3008 (2018). https://doi.org/10.1007/s11277-018-5321-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5321-5

Keywords