Skip to main content
Log in

Supervised and Constrained Nonnegative Matrix Factorization with Sparseness for Image Representation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nonnegative Matrix Factorization (NMF) has been becoming an important method for feature dimension reduction in recent years since it can represent data with strong strength. In this paper, we present a novel image representation method by integrating prior information of known samples and a certain sparseness constraint into NMF framework simultaneously, called Supervised and Constrained Nonnegative Matrix Factorization with Sparseness (SCNMFS). The proposed method can harvest the promising identification ability of the acquired coefficient matrix under the condition that the better sparsity of the factorized base matrix is ensured. From the perspective of theory, the proposed method can effectively reveal the intrinsic geometric characteristics of images. Extensive experimental results on common benchmarks demonstrate that SCNMFS has superiority compared with three state-of-the-art algorithms in image classification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee, D. D., & Seung, H. S. (2000). Algorithms for nonnegative matrix factorization. Advances in Neural Information Processing Systems, 12(1), 556–562.

    Google Scholar 

  2. Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791.

    Article  MATH  Google Scholar 

  3. Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constrains. Journal of Machine Learning Research, 5(9), 1457–1469.

    MATH  Google Scholar 

  4. Pascual-Montano, A., Carazo, J. M., Kochi, K., et al. (2006). Nonsmooth nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3), 403–415.

    Article  Google Scholar 

  5. Cai, D., He, X., et al. (2011). Graph regularized non-negative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1548–1560.

    Article  Google Scholar 

  6. Zheng, M., Bu, J., Chen, C., et al. (2011). Graph regularized sparse coding for image representation. IEEE Transactions on Image Processing, 20(5), 1327–1336.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bucak, S., & Gunsel, B. (2009). Incremental subspace learning via non-negative matrix factorization. Pattern Recognition, 42(5), 788–797.

    Article  MATH  Google Scholar 

  8. Jia, X., Sun, F., Li, H., et al. (2017). Image multi-label annotation based on supervised nonnegative matrix factorization with new matching measurement. Neurocomputing, 219(1), 518–525.

    Article  Google Scholar 

  9. Sun, F., Xu, M., Hu, X., et al. (2016). Graph regularized and sparse nonnegative matrix factorization with hard constraints for data representation. Neurocomputing, 173(1), 233–244.

    Article  Google Scholar 

  10. Liu, H., Wu, Z., Cai, D., et al. (2012). Constrained non-negative matrix factorization for image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1299–1311.

    Article  Google Scholar 

  11. Salehani, Y., & Gazor, S. (2017). Smooth and sparse regularization for NMF hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8), 3677–3692.

    Article  Google Scholar 

  12. Lu, X., Wu, H., Yuan, Y., et al. (2013). Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2815–2826.

    Article  Google Scholar 

  13. Lu, X., Wu, H., & Yuan, Y. (2014). Double constrained NMF for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2746–2758.

    Article  Google Scholar 

  14. Rajabi, R., & Ghassemian, H. (2015). Spectral unmixing of hyperspectral imagery using multilayer NMF. IEEE Geoscience and Remote Sensing Letters, 12(1), 38–42.

    Article  Google Scholar 

  15. Wang, W., & Qian, Y. (2015). Adaptive L1/2 sparsity-constrained NMF with half-thresholding algorithm for hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2618–2631.

    Article  Google Scholar 

  16. Wang, W., Qian, Y., & Tang, Y. (2016). Hypergraph-regularized sparse NMF for hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), 681–694.

    Article  Google Scholar 

  17. Yuan, Y., Feng, Y., & Lu, X. (2015). Projection-based NMF for hyperspectral unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2632–2643.

    Article  Google Scholar 

  18. Yuan, Y., Fu, M., & Lu, X. (2015). Substance dependence constrained sparse NMF for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 2975–2986.

    Article  Google Scholar 

  19. Meganem, I., Deville, Y., Hosseini, S., et al. (2014). Linear-quadratic blind source separation using NMF to unmix urban hyperspectral images, 62(7), 1822–1833.

    Google Scholar 

  20. Sun, M., Li, Y., Gemmeke, J., et al. (2015). Speech enhancement under low SNR conditions via noise estimation using sparse and low-rank NMF with Kullback–Leibler divergence. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(7), 1233–1242.

    Article  Google Scholar 

  21. Kwon, K., Shin, J., & Kim, N. (2015). NMF-based speech enhancement using bases update. IEEE Signal Processing Letters, 22(4), 450–454.

    Article  Google Scholar 

  22. Wood, S., Rouat, J., Dupont, S., & Pironkov, G. (2017). Blind speech separation and enhancement with GCC-NMF. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25, 745–755.

    Article  Google Scholar 

  23. Vaghmare, A., & Rao, C. (2017). Unsupervised noise removal technique based on constrained NMF. IET Signal Processing, 11(7), 788–795.

    Article  Google Scholar 

  24. Nikunen, J., Diment, A., & Virtanen, T. (2018). Separation of moving sound sources using multichannel NMF and acoustic tracking. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(2), 281–295.

    Article  Google Scholar 

  25. Chung, H., Plourde, E., & Champagne, B. (2016). Discriminative training of NMF model based on class probabilities for speech enhancement. IEEE Signal Processing Letters, 23(4), 502–506.

    Article  Google Scholar 

  26. Wang, S., Deng, C., Lin, W., et al. (2017). NMF-based image quality assessment using extreme learning machine. EEE Transactions on Cybernetics, 47(1), 232–243.

    Article  Google Scholar 

  27. Fan, R., Chang, K., Hsieh, C., et al. (2008). LIBLINEAR: A library for linear classification. Journal of Machine Learning Research, 9(1), 1871–1874.

    MATH  Google Scholar 

  28. Kapp, M., Sabourin, R., & Maupin, P. (2012). A dynamic model selection strategy for support vector machine classifiers. Applied Soft Computing, 12(8), 2550–2565.

    Article  Google Scholar 

  29. Rodríguez, J., Pérez, A., & Lozano, J. (2010). Sensitivity analysis of k-Fold cross validation in prediction error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 569–575.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibiao Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Sun, F. Supervised and Constrained Nonnegative Matrix Factorization with Sparseness for Image Representation. Wireless Pers Commun 102, 3055–3066 (2018). https://doi.org/10.1007/s11277-018-5325-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5325-1

Keywords

Navigation