Skip to main content
Log in

Trust Degree can Preserve Community Structure on Co-evolving Complex Networks in Spatial Generalized Prisoner’s Dilemma Game

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Community structure is one of the most ubiquitous and important features of many real systems, such as social, economy and biology networks. In this paper, we study the evolutionary dynamics in the realm of a generalized prisoner’s dilemma game on network which exhibits community structure and power law degree distribution co-evolving with the strategies. In our game, each person can be a cooperator, a defector or a super cooperator. A super cooperator is a cooperator who trusts other people much more than the normal one. During the evolution, when the expectation payoff is below a certain value, a link between the player and one of its neighbors will be broken and rewired to a cooperator or a super cooperator on network. Our results point out that lower trust degree can break the community structure of the network and inhibit the emergence of cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maynard-Smith, J., & Szathmary, E. (1995). The major transitions in evolution. Nature, 374(6519), 227–232.

    Article  Google Scholar 

  2. Nowak, M. A. (2004). Prisoners of the dilemma—When mathematics and biology met on a mountain. Nature, 427(6974), 491.

    Article  Google Scholar 

  3. Hauert, C., & Szabó, G. (2005). Game theory and physics. American Journal of Physics, 73, 405.

    Article  MathSciNet  MATH  Google Scholar 

  4. Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314, 1560–1563.

    Article  Google Scholar 

  5. Ohtsuk, H., Hauert, C., Lieberman, E., & Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441, 502–505.

    Article  Google Scholar 

  6. Gómez-Gardenẽs, J., Campillo, M., Floría, L., & Moreno, Y. (2007). Dynamical organization of cooperation in complex topologies. Physical Review Letters, 98(10), 108103.

    Article  Google Scholar 

  7. Roca, C. P., Cuesta, J. A., & Sánchez, A. (2009). Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics. Physics of Life Reviews, 6(4), 208–249.

    Article  Google Scholar 

  8. Kim, B. J., Trusina, A., Holme, P., Minnhagen, P., Chung, J. S., & Choi, M. Y. (2002). Dynamic instabilities induced by asymmetric influence: Prisoners’ dilemma game in small-world networks. Physical Review E, 66(2), 021907.

    Article  Google Scholar 

  9. Tomassini, M., Luthi, L., & Giacobini, M. (2006). Hawks and Doves on small-world networks. Physical Review E, 73(1), 016132.

    Article  Google Scholar 

  10. Rong, Z., Yang, H.-X., & Wang, W.-X. (2010). Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks. Physical Review E, 82(4), 047101.

    Article  Google Scholar 

  11. Tang, C.-L., Wang, W.-X., Wu, X., & Wang, B.-H. (2006). Effects of average degree on cooperation in networked evolutionary game. The European Physical Journal B-Condensed Matter and Complex Systems, 53(3), 411–415.

    Article  MATH  Google Scholar 

  12. Santos, F. C., & Pacheco, J. M. (2005). Scale-free networks provides a unifying framework for the emergence of cooperation. Physical Review Letters, 95(9), 098104.

    Article  Google Scholar 

  13. Santos, F. C., Santos, M. D., & Pacheco, J. M. (2008). Social diversity promotes the emergence of cooperation in public good games. Nature, 454(7201), 213–216.

    Article  Google Scholar 

  14. Wu, Z.-X., Rong, Z.-H., & Yang, H.-X. (2015). Impact of heterogeneous activity and community structure on the evolutionary success of cooperator in social networks. Physical Review E, 91(1), 012802.

    Article  Google Scholar 

  15. Wu, J.-S., Hou, Y.-Q., Jiao, L.-C., & Li, H.-J. (2014). Community structure inhibits cooperation in the spatial prisoner’s dilemma. Physica A, 412, 169–179.

    Article  MathSciNet  Google Scholar 

  16. Lozano, S., Arenas, A., & Sánchez, A. (2008). Mesoscopic structure conditions the emergence of cooperation on social networks. PLoS ONE, 3(4), e1892.

    Article  Google Scholar 

  17. Zimmermann, M. G., Eguíluz, V. M., & San, M. M. (2004). Coevolution of dynamical states and interactions in dynamic networks. Physical Review E, 69(6), 065102.

    Article  Google Scholar 

  18. Ren, J., Wu, X., Wang, W.-X., Chen, G., & Wang. B.-H. (2006). Interplay between evolutionary game and network structure: The coevolution of social net, cooperation and wealth. arXiv preprint physics 0605250.

  19. Fu, F., Hauert, C., Nowak, M.-A., & Wang, L. (2008). Reputation-based partner choice promotes cooperation in social networks. Physical Review E, 78(2), 026117.

    Article  Google Scholar 

  20. Eisert, J., Wilkens, M., & Lewenstein, M. (1999). Quantum games and quantum strategies. Physical Review Letters, 83, 3077–3080.

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Q., Chen, M., Perc, M., Iqbal, A., & Abbott, D. (2013). Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks. Scientific Reports, 3, 2949.

    Article  Google Scholar 

  22. Li, Q., Iqbal, A., Chen, M., & Abbott, D. (2012). Evolution of quantum and classical strategies on networks by group interactions. New Journal of Physics, 14(10), 103034.

    Article  MathSciNet  Google Scholar 

  23. Li, A., & Yong, X. (2014). Entanglement guarantees emergence of cooperation in quantum prisoner’s dilemma games on networks. Scientific Reports, 4, 6286.

    Article  Google Scholar 

  24. Li, A., & Yong, X. (2015). Emergence of super cooperation of prisoner’s dilemma games on scale-free networks. PLoS ONE, 10(2), e0116429.

    Article  Google Scholar 

  25. Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–818.

    Article  Google Scholar 

  26. Palla, G. L., Barabási, A., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136), 664–667.

    Article  Google Scholar 

  27. Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–764.

    Article  Google Scholar 

  28. Faccin, M., Migdał, P., Johnson, T. H., Bergholm, V., & Biamonte, J. D. (2014). Community detection in quantum complex networks. Physical Review X, 4(4), 041012.

    Article  Google Scholar 

  29. Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. Physical Review E, 78(4), 046110.

    Article  Google Scholar 

  30. Wu, Z.-X., Xu, X.-J., Huang, Z.-G., Wang, S.-J., & Yang, Y.-H. (2006). Evolutionary prisoner’s dilemma game with dynamic preferential selection. Physical Review E, 74, 021107.

    Article  MathSciNet  Google Scholar 

  31. Szabó, G., & Tőke, C. (1998). Evolutionary prisoner’s dilemma game on a square lattice. Physical Review E, 58(1), 69.

    Article  Google Scholar 

  32. Vukov, J., Szabó, G., & Szolnoki, A. (2008). Evolutionary prisoner’s dilemma game on Newman–Watts networks. Physical Review E, 77, 026109.

    Article  Google Scholar 

  33. Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Article  Google Scholar 

  34. Rosvall, M., & Bergstrom, T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 1118–1123.

    Article  Google Scholar 

  35. Bavelas, A. (1950). Communication patterns in task-oriented groups. The Journal of the Acoustical Society of America, 22(6), 725–730.

    Article  Google Scholar 

  36. Beauchamp, M. A. (1965). An improved index of centrality. Behavioral Science, 10(2), 161–163.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MOA monitoring statistics Project on Agricultural and rural resources founded by Ministry of Agriculture PRC, the MOA Innovative Talents Project founded by the Ministry of Agriculture PRC, the Science and Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences (CAAS - ASTIP- 2017 – AI I- 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayu Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, J., Yong, X., Zhao, J. et al. Trust Degree can Preserve Community Structure on Co-evolving Complex Networks in Spatial Generalized Prisoner’s Dilemma Game. Wireless Pers Commun 102, 3089–3100 (2018). https://doi.org/10.1007/s11277-018-5328-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5328-y

Keywords

Navigation