Skip to main content
Log in

Analysis and Simulation of Second-Order Statistics with Modified Characteristic Function Parameters in a Multipath Fading Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we analyse and implement a modified low pass filtering based characteristic function for a multipath Rayleigh fading channel. A new class of this modified filtering sequence based statistical simulation model is proposed for a Rayleigh fading environment. Comparing with the sum-of-sinusoids (SOS) deterministic model and its modifications as a new SOS model, the proposed model reintroduces the randomness to Doppler frequency and initial phase of the sinusoids to have non-deterministic simulators with desired statistical properties. The expressions and simulation results of level crossing rate (LCR) and average fade duration are derived and shown in this paper. Comparison of power spectra reveals that the spectrum spread is much less for our proposed method. Therefore, we would expect reduction in the rapidity of fading which is observed in LCR calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Skima, M. A., Ghariani, H., & Lahiani, M. (2014). A multi-criteria comparative analysis of different Rayleigh fading channel simulators. International Journal of Electronics and Communications, 68(6), 550–560.

    Article  Google Scholar 

  2. Fodor, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communication Magazine, 50(3), 170–177.

    Article  Google Scholar 

  3. Tellambura, C. (2008). Bound on the distribution of a sum of correlated log-normal random variables and their applications. IEEE Transaction on Communications, 56(8), 1241–1248.

    Article  MathSciNet  Google Scholar 

  4. Walter, M., Fiebig, U.-C., & Zajic, A. (2014). Experimental verification of the non-stationary statistical model for vehicle-to-vehicle scatter channels. In Proceedings of IEEE vehicular technology conference, Vancouver, Canada (pp. 1–5).

  5. Zhou, J., Qiu, L., & Kikuchi, H. (2012). Analysis and comparisons of geometrical-based channel model arisen from scatterers on a hollow-disc for outdoor and indoor wireless environments. IET Communications, 6(17), 2775–2786.

    Article  MathSciNet  Google Scholar 

  6. Zarate-Martinez, R., Pena-Campos, F., Vazquez Castillo, J., & Parra-Michel, R. (2011). Arbitrary distribution random variable generator for channel emulators. In Proceedings of the IEEE international conference on reconfigurable computing and FPGAs, Cancun, Mexico (pp. 339–344).

  7. Clarke, R. H. (1968). A statistical theory of mobile-radio reception. Bell System Technical Journal, 47(6), 957–1000.

    Article  Google Scholar 

  8. Rappaport, T. S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transaction on Communications, 63(9), 3029–3056.

    Article  Google Scholar 

  9. Samimi, M. K., & Rappaport, T. S. (2014). Ultra-wideband statistical channel model for non-line of sight millimeter-wave urban channels. In Proceedings of IEEE global communications conference (GLOBECOM), Austin, TX (pp. 3483–3489).

  10. Huang, H. (2014). Spatial channel model for multiple input multiple output (MIMO) simulations, document: 3GPP TR 25.996 V12.0.0, 3rd generation partnership project, technical specification group radio access network. Boulogne-Billancourt: Alcatel-Lucent.

    Google Scholar 

  11. Samimi, M. K., & Rappaport, T. S. (2015). Statistical channel model with multi-frequency and arbitrary antenna beamwidth for millimeterwave outdoor communications. In Proceedings of the IEEE global communications conference (GLOBECOM), San Dieogo, USA (pp. 1–7).

  12. Lingfeng, L., Roy, S. V., Quitin, F., Doncker, P. D., & Oestges, C. (2013). Statistical characterization and modeling of Doppler spectrum in dynamic on-body channels. IEEE Antennas and Wireless Propagation Letters, 12(1), 186–189.

    Google Scholar 

  13. Zheng, Y. R., & Xiao, C. (2003). Simulation models with correct statistical properties for Rayleigh fading channels. IEEE Transactions on Communications, 51(6), 920–928.

    Article  Google Scholar 

  14. Patel, C., Stuber, G., & Pratt, T. (2005). Comparative analysis of statistical models for the simulation of Rayleigh faded cellular channels. IEEE Transactions on Communications, 53(6), 1017–1026.

    Article  Google Scholar 

  15. Gan, Y., & Wu, Y. (2014). Multiple Rayleigh fading channels modelling based on sum-of-sinusoids model. International Journal of Communication Systems, 27(11), 2997–3012.

    Google Scholar 

  16. Zheng, Y. R., & Xiao, C. (2002). Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms. IEEE Communication Letters, 6(6), 256–258.

    Article  Google Scholar 

  17. Wang, J., Ma, X., Teng, J., & Cui, Y. (2012). Efficient and accurate simulator for Rayleigh and Rician fading. Transactions of Tianjin University, 18(4), 243–247.

    Article  Google Scholar 

  18. Papoulis, A. (1991). Probability, random variables, and stochastic processes (3rd ed.). Toronto: McGraw-Hill.

    MATH  Google Scholar 

  19. Xiao, C., Zheng, Y. R., & Beaulieu, N. C. (2002). Second-order statistical properties of the WSS Jakes’ fading channel simulator. IEEE Transaction on Communication, 50(6), 888–891.

    Article  Google Scholar 

  20. Pätzold, M. (2012). Mobile radio channels (2nd ed.). West Sussex: Wiley.

    Google Scholar 

  21. Kantas, A., Papadakis, N., Chatzopoulos, P., Sofos, T., & Constantinou, P. (1997). Land-mobile satellite channel measurements in athens city center at 1800 MHz. In Proceedings of the 1997 international mobile satellite conference, Pasadena, CA (pp. 169–175).

  22. Rice, S. O. (1944). Mathematical analysis of random noise. Bell System Technical Journal, 23(3), 282–332.

    Article  MathSciNet  MATH  Google Scholar 

  23. Akki, A. S., & Haber, F. (1986). A statistical model for mobile-to-mobile land communication channel. IEEE Transactions on Vehicular Technology, 35(1), 2–7.

    Article  Google Scholar 

  24. Gradshteyn and Ryzhik. (1965). Tables of integrals, series and products. New York: Academic Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhyacharan Bhaskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaka, A., Chauhan, S. & Bhaskar, V. Analysis and Simulation of Second-Order Statistics with Modified Characteristic Function Parameters in a Multipath Fading Environment. Wireless Pers Commun 100, 851–862 (2018). https://doi.org/10.1007/s11277-018-5352-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5352-y

Keywords

Navigation