Skip to main content
Log in

Variational Bayesian Inference for Infinite Dirichlet Mixture Towards Accurate Data Categorization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we focus on a variational Bayesian learning approach to infinite Dirichlet mixture model (VarInDMM) which inherits the confirmed effectiveness of modeling proportional data from infinite Dirichlet mixture model. Based on the Dirichlet process mixture model, VarInDMM has an interpretation as a mixture model with a countably infinite number of components, and it is able to determine the optimal value of this number according to the observed data. By introducing an extended variational inference framework, we further obtain an analytically tractable solution to estimate the posterior distributions of the parameters for the mixture model. Experimental results on both synthetic and real data demonstrate its good performance on object categorization and text categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nguyen, T. M., & Wu, Q. M. (2013). A nonsymmetric mixture model for unsupervised image segmentation. IEEE Transactions on Cybernetics, 43(2), 751–765.

    Article  Google Scholar 

  2. Ma, Z., & Leijon, A. (2011). Bayesian estimation of Beta mixture models with variational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2160–2173.

    Article  Google Scholar 

  3. Fan, W., Bouguila, N., & Ziou, D. (2012). Variational learning for finite Dirichlet mixture models and applications. IEEE Transactions on Neural Networks and Learning Systems, 23(5), 762–774.

    Article  Google Scholar 

  4. Ma, Z., Leijon, A., & Kleijn, W. B. (2013). Vector quantization of LSF parameters with a mixture of Dirichlet distributions. IEEE Transaction on Audio, Speech, and Language Processing, 21(9), 1777–1790.

    Article  Google Scholar 

  5. Yu, H., Tan, Z.-H., Ma, Z., Martin, R., & Guo, J. (2018). Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features. IEEE Transactions on Neural Networks and Learning Systems, PP(99), 1–12.

    Google Scholar 

  6. Ma, Z., Taghia, J., Kleijn, W. B., Leijon, A., & Guo, J. (2015). Line spectral frequencies modeling by a mixture of von Mises–Fisher distributions. Signal Processing, 114(C), 219–224.

    Article  Google Scholar 

  7. Ma, Z., Chatterjee, S., Kleijn, W. B., & Guo, J. (2014). Dirichlet mixture modeling to estimate an empirical lower bound for LSF quantization signal processing. Signal Processing, 104(6), 291–295.

    Article  Google Scholar 

  8. Figueiredo, M. A. T. (2002). Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 381–396.

    Article  Google Scholar 

  9. Bouguila, N., & Ziou, D. (2006). Unsupervised selection of a finite Dirichlet mixture model: An MML-based approach. IEEE Transactions on Knowledge and Data Engineering, 18(8), 993–1009.

    Article  Google Scholar 

  10. Ma, Z., Xie, J., Li, H., Sun, Q., Si, Z., Zhang, J., et al. (2017). The role of data analysis in the development of intelligent energy networks. IEEE Network, 31(5), 88–95.

    Article  Google Scholar 

  11. Reynolds, D. A., & Rose, R. C. (1995). Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing, 3(1), 72–83.

    Article  Google Scholar 

  12. Reynolds, D. A., Quatieri, T. F., & Dunn, R. B. (2000). Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 10(1–3), 19–41.

    Article  Google Scholar 

  13. Ma, Z., Teschendorff, A. E., Leijon, A., Qiao, Y., Zhang, H., & Guo, J. (2015). Variational Bayesian matrix factorization for bounded support data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(4), 876–889.

    Article  Google Scholar 

  14. Ma, Z., Xue, J. H., Leijon, A., Tan, Z. H., Yang, Z., & Guo, J. (2018). Decorrelation of neutral vector variables: Theory and applications. IEEE Transactions on Neural Networks and Learning Systems, 29(1), 129–143.

    Article  MathSciNet  Google Scholar 

  15. Ma, Z., Tan, Z. H., & Guo, J. (2016). Feature selection for neutral vector in EEG signal classification. Neurocomputing, 174(PB), 937–945.

    Article  Google Scholar 

  16. Atapattu, S., Tellambura, C., & Jiang, H. (2011). A mixture Gamma distribution to model the SNR of wireless channels. IEEE Transactions on Wireless Communications, 10(12), 4193–4203.

    Article  Google Scholar 

  17. Bouguila, N. (2012). Hybrid generative/discriminative approaches for proportional data modeling and classification. IEEE Transactions on Knowledge and Data Engineering, 24(12), 2184–2202.

    Article  Google Scholar 

  18. Taghia, J., Ma, Z., & Leijon, A. (2014). Bayesian estimation of the von-Mises Fisher mixture model with variational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(9), 1701–1715.

    Article  Google Scholar 

  19. Nguyen, T. M., Wu, Q. M., Mukherjee, D., & Zhang, H. (2014). A Bayesian bounded asymmetric mixture model with segmentation application. IEEE Journal of Biomedical and Health Informatics, 18(1), 109–119.

    Article  Google Scholar 

  20. Seghouane, A. K., & Amari, S. I. (2007). The AIC criterion and symmetrizing the Kullback–Leibler divergence. IEEE Transactions on Neural Networks, 18(1), 97–106.

    Article  Google Scholar 

  21. Antoniak, C. E. (1997). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annalsis of Statistics, 2(6), 1152–1174.

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, X., & Li, C. (2012). The infinite student’s t-mixture for robust modeling. Signal Processing, 92(1), 224–234.

    Article  Google Scholar 

  23. Fan, W., & Bouguila, N. (2014). Variational learning for Dirichlet process mixtures of dirichlet distributions and applications. Multimedia Tools and Applications, 70(3), 1685–1702.

    Article  Google Scholar 

  24. Fan, W., & Bouguila, N. (2013). Online learning of a Dirichlet process mixture of beta-Liouville distributions via variational inference. IEEE Transactions on Neural Networks and Learning Systems, 24(11), 1850–1862.

    Article  Google Scholar 

  25. Gershman, S. J., & Blei, D. M. (2012). A tutorial on Bayesian nonparametric models. Journal of Mathematical Psychology, 56(1), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  26. Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

    MATH  Google Scholar 

  27. Ma, Z., Rana, P. K., Taghia, J., Flierl, M., & Leijon, A. (2014). Bayesian estimation of Dirichlet mixture model with variational inference. Pattern Recognition, 47(9), 3143–3157.

    Article  MATH  Google Scholar 

  28. Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476), 1566–1581.

    Article  MathSciNet  MATH  Google Scholar 

  29. Blackwell, D., & Macqueen, J. B. (1973). Ferguson distributions via polya URN schemes. The Annals of Statistics, 1(2), 353–355.

    Article  MathSciNet  MATH  Google Scholar 

  30. Blei, D. M., & Jordan, M. I. (2005). Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1), 121–144.

    Article  MathSciNet  MATH  Google Scholar 

  31. Hoffman, M. D., Blei, D. M. & Cook, P. R. (2010). Bayesian nonparametric matrix factorization for recorded music. In International Conference on Machine Learning (NIPS), pp. 439–446.

  32. Bishop, C. M., Lawrence, N., Jaakkola, T., & Jordan, M. I. (1997). Approximating posterior distributions in belief networks using mixtures. In Conference on Advances in Neural Information Processing Systems (NIPS), pp. 1–7.

  33. Wang, X., Liu, X., Shi, Z., & Sui, H. (2012). A feature binding computational model for multi-class object categorization and recognition. Neural Computing and Applications, 21(6), 1297–1305.

    Article  Google Scholar 

  34. Lampert, C. H., Nickisch, H., & Harmeling, S. (2014). Attribute-based classification for zeroshot visual object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3), 453–65.

    Article  Google Scholar 

  35. Bergamo, A., & Torresani, L. (2014). Classemes and other classifier-based features for efficient object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(10), 1988–2001.

    Article  Google Scholar 

  36. Xu, P., Yin, Q., Huang, Y., Song, Y.-Z., Ma, Z., Wang, L., et al. (2018). Cross-modal subspace learning for fine-grained sketch-based image retrieval. Neurocomputing, 278, 75–86.

    Article  Google Scholar 

  37. Lowe, D. G., & Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  MathSciNet  Google Scholar 

  38. Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630.

    Article  Google Scholar 

  39. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 886–893.

  40. Li, W., Chen, C., Su, H., & Du, Q. (2015). Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3681–3693.

    Article  Google Scholar 

  41. Ludwig, O., Delgado, D., Goncalves, V., & Nunes, U. (2009). Trainable classifier-fusion schemes: An application to pedestrian detection. In IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6.

  42. Leibe, B., & Schiele, B. (2003). Analyzing appearance and contour based methods for object categorization. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. II-409–II-415.

  43. Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In IEEE Computer Society Conference on computer Vision and Pattern Recognition (CVPR), pp. II-264–II-271.

  44. Li, F. F., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In IEEE International Conference on Computer Vision and Pattern Recognition Workshop (CVPR), pp. 178–178.

  45. Gao, B., Liu, T. Y., Feng, G., Qin, T., Cheng, Q. S., & Ma, W. Y. (2005). Hierarchical taxonomy preparation for text categorization using consistent bipartite spectral graph copartitioning. IEEE Transactions on Knowledge and Data Engineering, 17(9), 1263–1273.

    Article  Google Scholar 

  46. Cai, D., & He, X. (2012). Manifold adaptive experimental design for text categorization. IEEE Transactions on Knowledge and Data Engineering, 24(4), 707–719.

    Article  Google Scholar 

  47. Ping, Y., Chang, Y., Zhou, Y., Tian, Y., Yang, Y., & Zhang, Z. (2015). Fast and scalable support vector clustering for large-scale data analysis. Knowledge and Information System, 43(2), 281–310.

    Article  Google Scholar 

  48. Ping, Y., Tian, Y., Guo, C., Wang, B., & Yang, Y. (2017). FRSVC: Towards making support vector clustering consume less. Pattern Recognition, 69(9), 286–298.

    Article  Google Scholar 

  49. Juan, A., & Vidal, E. (2002). On the use of Bernoulli mixture models for text classification. Pattern Recognition, 11(35), 2705–2710.

    Article  MATH  Google Scholar 

  50. Bouguila, N., & Ziou, D. (2010). A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Transactions on Neural Networks, 21(1), 107–122.

    Article  Google Scholar 

  51. Bouguila, N. (2012). Infinite Liouville mixture models with application to text and texture categorization. Pattern Recognition Letters, 33(2), 103–0110.

    Article  Google Scholar 

  52. Tang, B., He, H., Baggenstoss, P. M., & Kay, S. (2016). A Bayesian classification approach using class-specific features for text categorization. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1602–1606.

    Article  Google Scholar 

  53. Ping, Y., & Zhou, Y. (2012). Efficient representation of text with multiple perspectives. The Journal of China Universities of Posts and Telecommunications, 1(19), 101–111.

    Article  Google Scholar 

  54. Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 513335004, the Program for Science & Technology Innovation Talents in Universities of Henan Province under Grant No. 18HASTIT022, the Plan For Scientific Innovation Talent of He’nan Province under Grand No. 184100510012, the Foundation for University Key Teacher of Henan Province under Grant No. 2016GGJS-141, the Foundation of Henan Educational Committee under Grant Nos. 16A520025 and 18A520047, the Open Project Foundation of Information Technology Research Base of Civil Aviation Administration of China under Grant No. CAAC-ITRB-201702, Yunnan Provincial Department of Education Science Research Fund Project under Grant No. 2017ZDX045, Heilongjiang Natural Science Foundation under Grant No. H2016100, and Innovation Scientists and Technicians Troop Construction Projects of He’nan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Ping.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., He, W., Ping, Y. et al. Variational Bayesian Inference for Infinite Dirichlet Mixture Towards Accurate Data Categorization. Wireless Pers Commun 102, 2307–2329 (2018). https://doi.org/10.1007/s11277-018-5723-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5723-4

Keywords

Navigation