Abstract
Automatic analysis of chest radiographs using computer-aided diagnosis (CAD) systems is pivotal to perform mass screening and detect early signs of various abnormalities in patients. In a chest radiographic CAD system, segmentation of lung fields is a pre-requisite step to precisely define region-of-interest and is subsequently used by other stages of the CAD system. However, automatic segmentation of lung fields is extremely challenging due to substantial variation in lung’s shape and size. It still remains an active area of research with sufficient scope to explore new horizon. This paper presents an efficient variant of fully-convolutional network that performs segmentation of lung fields in chest radiographs. The major contribution of this work is in proposing a deep learning-based segmentation architecture that is especially suitable for lung segmentation. The proposed architecture is trained and evaluated on publicly available standard datasets. The architecture achieves the testing accuracy of 98.92% and testing overlap of 95.88% which is better than state-of-the-art methods.









Similar content being viewed by others
References
Alexander Kalinovsky, A., & Kovalev, V. (2016). Lung image segmentation using deep learning methods and convolutional neural networks. In XIII international conference on pattern recognition and information processing. Minsk: Publishing Center of BSU.
Annangi, P., Thiruvenkadam, S., Raja, A., Xu, H., Sun, X., & Mao, L. (2010). A region based active contour method for X-ray lung segmentation using prior shape and low level features. In 2010 IEEE international symposium on biomedical imaging: from nano to macro (pp. 892–895). IEEE.
Arbabshirani, M. R., Dallal, A. H., Agarwal, C., Patel, A., & Moore, G. (2017). Accurate segmentation of lung fields on chest radiographs using deep convolutional networks. In SPIE Medical Imaging (pp. 1013,305–1013,305). International Society for Optics and Photonics.
Armato, S. G., Giger, M. L., & MacMahon, H. (1998). Automated lung segmentation in digitized posteroanterior chest radiographs. Academic Radiology, 5(4), 245–255.
Badrinarayanan, V., Handa, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.
Candemir, S., Antani, S., Jaeger, S., Browning, R., & Thoma, G. R. (2015). Lung boundary detection in pediatric chest x-rays. In SPIE medical imaging (pp. 94,180Q–94,180Q). International Society for Optics and Photonics.
Candemir, S., Jaeger, S., Palaniappan, K., Antani, S., & Thoma, G. (2012). Graph-cut based automatic lung boundary detection in chest radiographs. In IEEE Healthcare Technology Conference: Translational engineering in health & medicine (pp. 31–34).
Candemir, S., Jaeger, S., Palaniappan, K., Musco, J. P., Singh, R. K., Xue, Z., et al. (2014). Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Transactions on Medical Imaging, 33(2), 577–590.
Duryea, J., & Boone, J. M. (1995). A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images. Medical Physics, 22(2), 183–191.
van Ginneken, B., Stegmann, M. B., & Loog, M. (2006). Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Medical Image Analysis, 10(1), 19–40.
van Ginneken, B., & ter Haar Romeny, B. M. (2000). Automatic segmentation of lung fields in chest radiographs. Medical Physics, 27(10), 2445–2455. https://doi.org/10.1118/1.1312192.
Hasegawa, A., Lo, S. C. B., Freedman, M. T., & Mun, S. K. (1994) Convolution neural-network-based detection of lung structures. In Medical imaging 1994 (pp. 654–662). International Society for Optics and Photonics
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A. C., Bengio, Y., Pal, C., Jodoin, P., & Larochelle, H. (2015). Brain tumor segmentation with deep neural networks. CoRR abs/1505.03540. URL arXiv:1505.03540.
Jaeger, S., Candemir, S., Antani, S., Wáng, Y. X. J., Lu, P. X., & Thoma, G. (2014). Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery, 4(6), 475–477.
Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Li, L., Zheng, Y., Kallergi, M., & Clark, R. A. (2001). Improved method for automatic identification of lung regions on chest radiographs. Academic Radiology, 8(7), 629–638.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).
McNitt-Gray, M. F., Sayre, J. W., Huang, H. K., & Razavi, M. (1993). A pattern classification approach to segmentation of chest radiographs. Proceedings of SPIE, 1898(1898), 160–170.
Melendez, J., Sánchez, C. I., Philipsen, R. H., Maduskar, P., Dawson, R., Theron, G., et al. (2016). An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Scientific Reports, 6, 25,265.
Novikov, A. A., Major, D., Lenis, D., Hladuvka, J., Wimmer, M., & Buhler, K. (2017). Fully convolutional architectures for multi-class segmentation in chest radiographs. arXiv preprint arXiv:1701.08816.
Oliveira, L. L. G., e Silva, S. A., Ribeiro, L. H. V., de Oliveira, R. M., Coelho, C. J., & Andrade, A. L. S. (2008). Computer-aided diagnosis in chest radiography for detection of childhood pneumonia. International Journal of Medical Iinformatics, 77(8), 555–564.
Pietka, E. (1994). Lung segmentation in digital radiographs. Journal of Digital Imaging, 7(2), 79–84.
Plankis, T., Juozapavicius, A., Stašiene, E., & Usonis, V. (2017). Computer-aided detection of interstitial lung diseases: A texture approach. Nonlinear Analysis, 22(3), 404–411.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). Springer.
Roth, H., Farag, A., Lu, L., Turkbey, E. B., & Summers, R. M. (2015). Deep convolutional networks for pancreas segmentation in CT imaging. CoRR abs/1504.03967. URL arXiv:1504.03967
Roth, H. R., Lu, L., Farag, A., Shin, H., Liu, J., Turkbey, E., & Summers, R. M. (2015). Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. CoRR abs/1506.06448. URL arXiv:1506.06448.
Sánchez Morillo, D., León Jiménez, A., & Moreno, S. A. (2013). Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease. Journal of the American Medical Informatics Association, 20(e1), e111–e117.
Shi, Y., Qi, F., Xue, Z., Chen, L., Ito, K., Matsuo, H., et al. (2008). Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Transactions on Medical Imaging, 27(4), 481–494.
Shi, Z., Zhou, P., He, L., Nakamura, T., Yao, Q., & Itoh, H. (2009) Lung segmentation in chest radiographs by means of gaussian kernel-based fcm with spatial constraints. In Sixth international conference on fuzzy systems and knowledge discovery, 2009. FSKD’09. (Vol. 3, pp. 428–432). IEEE.
Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K. I. et al. (2000). Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. American Journal of Roentgenology, 174(1), 71–74.
Suzuki, K. (2017). Computer-aided detection of lung cancer. In H. Arimura (Ed.), Image-based computer-assisted radiation therapy, pp. 9–40. Springer.
Tsujii, O., Freedman, M. T., & Mun, S. K. (1998). Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network. Medical Physics, 25(6), 998–1007.
Van Ginneken, B., Frangi, A. F., Staal, J. J., ter Haar Romeny, B. M., & Viergever, M. A. (2002). Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 21(8), 924–933.
Wan Ahmad, W. S. H. M., Zaki, W. M. D. W., & Ahmad Fauzi, M. F. (2015). Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomedical Engineering Online,. https://doi.org/10.1186/s12938-015-0014-8.
Xu, T., Mandal, M., Long, R., Cheng, I., & Basu, A. (2012). An edge-region force guided active shape approach for automatic lung field detection in chest radiographs. Computerized Medical Imaging and Graphics, 36(6), 452–463. https://doi.org/10.1016/j.compmedimag.2012.04.005. URL http://www.sciencedirect.com/science/article/pii/S0895611112000778.
Acknowledgements
The authors would like to thank Nvidia Corporation for providing free-of-cost GPU for performing our experiments. The first author would also like to thank University Grants Commission (UGC) for providing him with the assistantship to carry out the research.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hooda, R., Mittal, A. & Sofat, S. An Efficient Variant of Fully-Convolutional Network for Segmenting Lung Fields from Chest Radiographs. Wireless Pers Commun 101, 1559–1579 (2018). https://doi.org/10.1007/s11277-018-5777-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-018-5777-3