Skip to main content

Advertisement

Log in

An Efficient Variant of Fully-Convolutional Network for Segmenting Lung Fields from Chest Radiographs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Automatic analysis of chest radiographs using computer-aided diagnosis (CAD) systems is pivotal to perform mass screening and detect early signs of various abnormalities in patients. In a chest radiographic CAD system, segmentation of lung fields is a pre-requisite step to precisely define region-of-interest and is subsequently used by other stages of the CAD system. However, automatic segmentation of lung fields is extremely challenging due to substantial variation in lung’s shape and size. It still remains an active area of research with sufficient scope to explore new horizon. This paper presents an efficient variant of fully-convolutional network that performs segmentation of lung fields in chest radiographs. The major contribution of this work is in proposing a deep learning-based segmentation architecture that is especially suitable for lung segmentation. The proposed architecture is trained and evaluated on publicly available standard datasets. The architecture achieves the testing accuracy of 98.92% and testing overlap of 95.88% which is better than state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alexander Kalinovsky, A., & Kovalev, V. (2016). Lung image segmentation using deep learning methods and convolutional neural networks. In XIII international conference on pattern recognition and information processing. Minsk: Publishing Center of BSU.

  2. Annangi, P., Thiruvenkadam, S., Raja, A., Xu, H., Sun, X., & Mao, L. (2010). A region based active contour method for X-ray lung segmentation using prior shape and low level features. In 2010 IEEE international symposium on biomedical imaging: from nano to macro (pp. 892–895). IEEE.

  3. Arbabshirani, M. R., Dallal, A. H., Agarwal, C., Patel, A., & Moore, G. (2017). Accurate segmentation of lung fields on chest radiographs using deep convolutional networks. In SPIE Medical Imaging (pp. 1013,305–1013,305). International Society for Optics and Photonics.

  4. Armato, S. G., Giger, M. L., & MacMahon, H. (1998). Automated lung segmentation in digitized posteroanterior chest radiographs. Academic Radiology, 5(4), 245–255.

    Article  Google Scholar 

  5. Badrinarayanan, V., Handa, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293

  6. Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.

  7. Candemir, S., Antani, S., Jaeger, S., Browning, R., & Thoma, G. R. (2015). Lung boundary detection in pediatric chest x-rays. In SPIE medical imaging (pp. 94,180Q–94,180Q). International Society for Optics and Photonics.

  8. Candemir, S., Jaeger, S., Palaniappan, K., Antani, S., & Thoma, G. (2012). Graph-cut based automatic lung boundary detection in chest radiographs. In IEEE Healthcare Technology Conference: Translational engineering in health & medicine (pp. 31–34).

    Google Scholar 

  9. Candemir, S., Jaeger, S., Palaniappan, K., Musco, J. P., Singh, R. K., Xue, Z., et al. (2014). Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Transactions on Medical Imaging, 33(2), 577–590.

    Article  Google Scholar 

  10. Duryea, J., & Boone, J. M. (1995). A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images. Medical Physics, 22(2), 183–191.

    Article  Google Scholar 

  11. van Ginneken, B., Stegmann, M. B., & Loog, M. (2006). Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Medical Image Analysis, 10(1), 19–40.

    Article  Google Scholar 

  12. van Ginneken, B., & ter Haar Romeny, B. M. (2000). Automatic segmentation of lung fields in chest radiographs. Medical Physics, 27(10), 2445–2455. https://doi.org/10.1118/1.1312192.

    Article  Google Scholar 

  13. Hasegawa, A., Lo, S. C. B., Freedman, M. T., & Mun, S. K. (1994) Convolution neural-network-based detection of lung structures. In Medical imaging 1994 (pp. 654–662). International Society for Optics and Photonics

  14. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A. C., Bengio, Y., Pal, C., Jodoin, P., & Larochelle, H. (2015). Brain tumor segmentation with deep neural networks. CoRR abs/1505.03540. URL arXiv:1505.03540.

  15. Jaeger, S., Candemir, S., Antani, S., Wáng, Y. X. J., Lu, P. X., & Thoma, G. (2014). Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery, 4(6), 475–477.

    Google Scholar 

  16. Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  17. Li, L., Zheng, Y., Kallergi, M., & Clark, R. A. (2001). Improved method for automatic identification of lung regions on chest radiographs. Academic Radiology, 8(7), 629–638.

    Article  Google Scholar 

  18. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).

  19. McNitt-Gray, M. F., Sayre, J. W., Huang, H. K., & Razavi, M. (1993). A pattern classification approach to segmentation of chest radiographs. Proceedings of SPIE, 1898(1898), 160–170.

    Article  Google Scholar 

  20. Melendez, J., Sánchez, C. I., Philipsen, R. H., Maduskar, P., Dawson, R., Theron, G., et al. (2016). An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Scientific Reports, 6, 25,265.

    Article  Google Scholar 

  21. Novikov, A. A., Major, D., Lenis, D., Hladuvka, J., Wimmer, M., & Buhler, K. (2017). Fully convolutional architectures for multi-class segmentation in chest radiographs. arXiv preprint arXiv:1701.08816.

  22. Oliveira, L. L. G., e Silva, S. A., Ribeiro, L. H. V., de Oliveira, R. M., Coelho, C. J., & Andrade, A. L. S. (2008). Computer-aided diagnosis in chest radiography for detection of childhood pneumonia. International Journal of Medical Iinformatics, 77(8), 555–564.

    Article  Google Scholar 

  23. Pietka, E. (1994). Lung segmentation in digital radiographs. Journal of Digital Imaging, 7(2), 79–84.

    Article  Google Scholar 

  24. Plankis, T., Juozapavicius, A., Stašiene, E., & Usonis, V. (2017). Computer-aided detection of interstitial lung diseases: A texture approach. Nonlinear Analysis, 22(3), 404–411.

    Article  MathSciNet  Google Scholar 

  25. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). Springer.

  26. Roth, H., Farag, A., Lu, L., Turkbey, E. B., & Summers, R. M. (2015). Deep convolutional networks for pancreas segmentation in CT imaging. CoRR abs/1504.03967. URL arXiv:1504.03967

  27. Roth, H. R., Lu, L., Farag, A., Shin, H., Liu, J., Turkbey, E., & Summers, R. M. (2015). Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. CoRR abs/1506.06448. URL arXiv:1506.06448.

  28. Sánchez Morillo, D., León Jiménez, A., & Moreno, S. A. (2013). Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease. Journal of the American Medical Informatics Association, 20(e1), e111–e117.

    Article  Google Scholar 

  29. Shi, Y., Qi, F., Xue, Z., Chen, L., Ito, K., Matsuo, H., et al. (2008). Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Transactions on Medical Imaging, 27(4), 481–494.

    Article  Google Scholar 

  30. Shi, Z., Zhou, P., He, L., Nakamura, T., Yao, Q., & Itoh, H. (2009) Lung segmentation in chest radiographs by means of gaussian kernel-based fcm with spatial constraints. In Sixth international conference on fuzzy systems and knowledge discovery, 2009. FSKD’09. (Vol. 3, pp. 428–432). IEEE.

  31. Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K. I. et al. (2000). Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. American Journal of Roentgenology, 174(1), 71–74.

    Article  Google Scholar 

  32. Suzuki, K. (2017). Computer-aided detection of lung cancer. In H. Arimura (Ed.), Image-based computer-assisted radiation therapy, pp. 9–40. Springer.

    Chapter  Google Scholar 

  33. Tsujii, O., Freedman, M. T., & Mun, S. K. (1998). Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network. Medical Physics, 25(6), 998–1007.

    Article  Google Scholar 

  34. Van Ginneken, B., Frangi, A. F., Staal, J. J., ter Haar Romeny, B. M., & Viergever, M. A. (2002). Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 21(8), 924–933.

    Article  Google Scholar 

  35. Wan Ahmad, W. S. H. M., Zaki, W. M. D. W., & Ahmad Fauzi, M. F. (2015). Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomedical Engineering Online,. https://doi.org/10.1186/s12938-015-0014-8.

    Google Scholar 

  36. Xu, T., Mandal, M., Long, R., Cheng, I., & Basu, A. (2012). An edge-region force guided active shape approach for automatic lung field detection in chest radiographs. Computerized Medical Imaging and Graphics, 36(6), 452–463. https://doi.org/10.1016/j.compmedimag.2012.04.005. URL http://www.sciencedirect.com/science/article/pii/S0895611112000778.

Download references

Acknowledgements

The authors would like to thank Nvidia Corporation for providing free-of-cost GPU for performing our experiments. The first author would also like to thank University Grants Commission (UGC) for providing him with the assistantship to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Mittal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooda, R., Mittal, A. & Sofat, S. An Efficient Variant of Fully-Convolutional Network for Segmenting Lung Fields from Chest Radiographs. Wireless Pers Commun 101, 1559–1579 (2018). https://doi.org/10.1007/s11277-018-5777-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5777-3

Keywords