Skip to main content
Log in

Cognitive Radio Networks: Analysis of a Paid-Sharing Approach Based on Admission Control Decisions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio networks have emerged in the last decade as a solution for two problems: spectrum underutilization and spectrum scarcity. The main idea is to manage the radio spectrum more efficiently, where secondary users (SUs) are allowed to exploit the spectrum holes in primary user’s (PUs) frequency bands. We consider a paid-sharing approach where SUs pay for spectrum utilization. A challenging aspect in these mechanisms is how to proceed when a PU needs certain amount of bandwidth and the free capacity is insufficient. We assume a preemptive system where PUs have strict priority over SUs; when a PU arrives to the system and there are not enough free channels to accommodate the new user, one or more SUs will be deallocated. The affected SUs will then be reimbursed, implying some cost for the PUs service provider (SP). This paper bears on the design and analysis of an optimal SU admission control policy; i.e. that maximizes the long-run profit of the SP. We model the optimal revenue problem as a Markov Decision Process and we use dynamic programming and further techniques such as sample-path analysis to characterize properties of the optimal admission control policy. We introduce different changes to one of the best known dynamic programming algorithms incorporating the knowledge of the characterization. In particular, those proposals accelerate the rate of convergence of the algorithm when is applied in the considered context. Our results are validated through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \(V_{n_x}(y)\) is \(V_{n}(x,y)\) for fixed x.

  2. If the number of busy channels is greater than \(C-b_2\), the admission control decision is known, then the number of combinations to evaluate is fewer than in case 1.

References

  1. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159. https://doi.org/10.1016/j.comnet.2006.05.001.

    Article  MATH  Google Scholar 

  2. Alagoz, O., & Ayvaci, M. U. (2010). Uniformization in Markov decision processes. New York: Wiley. https://doi.org/10.1002/9780470400531.eorms0934.

    Google Scholar 

  3. Backens, J., Xin, C., & Song, M. (2015). A novel protocol for transparent and simultaneous spectrum access between the secondary user and the primary user in cognitive radio networks. Computer Communications, 69, 98–106. https://doi.org/10.1016/j.comcom.2015.07.004.

    Article  Google Scholar 

  4. Bertsekas, D. P. (2000). Dynamic programming and optimal control (2nd ed.). Belmont: Athena Scientific.

    Google Scholar 

  5. Blaschke, V., Jaekel, H., Renk, T., Kloeck, C., & Jondral, F. (2007). Occupation measurements supporting dynamic spectrum allocation for cognitive radio design. In 2nd international conference on cognitive radio oriented wireless networks and communications. CrownCom 2007 (pp. 50–57). https://doi.org/10.1109/CROWNCOM.2007.4549771.

  6. Conti, M., Chong, S., Fdida, S., Jia, W., Karl, H., Lin, Y. D., et al. (2011). Research challenges towards the future internet. Computer Communications, 34(18), 2115–2134. https://doi.org/10.1016/j.comcom.2011.09.001.

    Article  Google Scholar 

  7. Cui, C., Man, H., Wang, Y., & Liu, S. (2016). Optimal cooperative spectrum aware opportunistic routing in cognitive radio ad hoc networks. Wireless Personal Communications, 91(1), 101–118. https://doi.org/10.1007/s11277-016-3447-x.

    Article  Google Scholar 

  8. Das, D., & Das, S. (2015). A survey on spectrum occupancy measurement for cognitive radio. Wireless Personal Communications, 85(4), 2581–2598. https://doi.org/10.1007/s11277-015-2921-1.

    Article  Google Scholar 

  9. De Nardis, L., & Holland, O. (2014). Deployment scenarios for cognitive radio (pp. 49–116). Cham: Springer. https://doi.org/10.1007/978-3-319-04022-6_2.

    Google Scholar 

  10. El-Taha, M., & Stidham, S, Jr. (1999). Sample-path analysis of queueing systems. New York: Springer. https://doi.org/10.1007/978-1-4615-5721-0.

    Book  MATH  Google Scholar 

  11. Federal Communications Commission (FCC). (2003). Promoting efficient use of spectrum through elimination of barriers to the development of secondary markets—Report and order and further notice of proposed rulemaking, wt Docket no. 00-230. Technical report.

  12. Federal Communications Commission (FCC). (2004). NPRM 04-186 unlicensed operation in the TV broadcast bands. Technical report.

  13. Hassan, M. S., Abusara, A., Din, M. S. E., & Ismail, M. H. (2016). On efficient channel modeling for video transmission over cognitive radio networks. Wireless Personal Communications, 91(2), 919–932. https://doi.org/10.1007/s11277-016-3504-5.

    Article  Google Scholar 

  14. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380.

    Article  Google Scholar 

  15. IEEE Std 802.22-2011. (2011). IEEE standard for information technology—Local and metropolitan area networks—specific requirements—Part 22: Cognitive wireless ran medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands (pp. 1–680) https://doi.org/10.1109/IEEESTD.2011.5951707.

  16. IEEE Std 802.11af-2013. (2014). IEEE standard for information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: Television white spaces (TVWS) operation (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012, IEEE Std 802.11aa-2012, IEEE Std 802.11ad-2012, and IEEE Std 802.11ac-2013) (pp. 1–198) https://doi.org/10.1109/IEEESTD.2014.6744566

  17. Jiang, C., Duan, L., & Huang, J. (2014). Joint spectrum pricing and admission control for heterogeneous secondary users. In 2014 12th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt) (pp. 497–504) https://doi.org/10.1109/WIOPT.2014.6850338.

  18. Kim, B., & Ko, S. S. (2015). Optimal admission control and state space reduction in two-class preemptive loss systems. ETRI Journal, 37(5), 917–921. https://doi.org/10.4218/etrij.15.0114.0348.

    Article  Google Scholar 

  19. Liu, Z., Nain, P., & Towsley, D. (1995). Sample path methods in the control of queues. Queueing Systems, 21(3), 293–335. https://doi.org/10.1007/BF01149166.

    Article  MathSciNet  MATH  Google Scholar 

  20. McHenry, M. A., McCloskey, D., Roberson, D., & MacDonald, J. T. (2005). NSF spectrum occupancy measurements project summary. Technical report, Shared Spectrum Co., and IIT Wireless Interference Lab Illinois Institute of Technology.

  21. McMenamy, J., Macaluso, I., Marchetti, N., & Doyle, L. (2014). A methodology to help operators share the spectrum through an enhanced form of carrier aggregation. In IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 334–345). https://doi.org/10.1109/DySPAN.2014.6817810.

  22. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18. https://doi.org/10.1109/98.788210.

    Article  Google Scholar 

  23. Niyato, D., & Hossain, E. (2008). Competitive pricing for spectrum sharing in cognitive radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion. IEEE Journal on Selected Areas in Communications, 26(1), 192–202. https://doi.org/10.1109/JSAC.2008.080117.

    Article  Google Scholar 

  24. Ormeci, E., & van der Wal, J. (2006). Admission policies for a two class loss system with general interarrival times. Stochastic Models, 22(1), 37–53. https://doi.org/10.1080/15326340500481721.

    Article  MathSciNet  MATH  Google Scholar 

  25. Pashenkova, E., Rish, I., & Dechter, R. (1996). Value iteration and policy iteration algorithms for Markov decision problem. Technical report, Department of Information and Computer Science, University of California at Irvine.

  26. Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming (1st ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  27. Puterman, M. L., & Shin, M. C. (1978). Modified policy iteration algorithms for discounted Markov decision problems. Management Science, 24(11), 1127–1137. https://doi.org/10.1287/mnsc.24.11.1127.

    Article  MathSciNet  MATH  Google Scholar 

  28. Raiss-El-Fenni, M., El-Azouzi, R., El-Kamili, M., Ibrahimi, K., & Bouyakhf, E. H. (2012). Dynamic spectrum allocation with admission control based on cognitive radio for QoS support in multiple wireless network. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–13. https://doi.org/10.1186/1687-1499-2012-296.

    Article  Google Scholar 

  29. Ross, S. M. (1996). Stochastic Processes (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  30. Savin, S. V., Cohen, M. A., Gans, N., & Katalan, Z. (2005). Capacity management in rental businesses with two customer bases. Operations Research, 53(4), 617–631. https://doi.org/10.1287/opre.1040.0193.

    Article  MATH  Google Scholar 

  31. Sucasas, V., Radwan, A., Mumtaz, S., & Rodriguez, J. (2015). Effect of noisy channels in MAC-based SSDF counter-mechanisms for 5G cognitive radio networks. In 2015 international symposium on wireless communication systems (ISWCS) (pp. 736–740). https://doi.org/10.1109/ISWCS.2015.7454447.

  32. Turhan, A., Alanyali, M., & Starobinski, D. (2012). Dynamic pricing of preemptive service for elastic demand. In 2012 IEEE 51st IEEE conference on decision and control (CDC) (pp. 2084–2089). https://doi.org/10.1109/CDC.2012.6426304.

  33. Turhan, A., Alanyali, M., & Starobinski, D. (2012). Optimal admission control of secondary users in preemptive cognitive radio networks. In 10th international symposium on modeling and optimization in mobile, ad hoc and wireless networks (WiOpt) (pp. 138–144).

  34. Ulukus, M. Y., Gullu, R., & Ormeci, L. (2011). Admission and termination control of a two class loss system. Stochastic Models, 27(1), 2–25. https://doi.org/10.1080/15326349.2011.542719.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, B., & Liu, K. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23. https://doi.org/10.1109/JSTSP.2010.2093210.

    Article  Google Scholar 

  36. Wang, X., Li, Z., Xu, P., Xu, Y., Gao, X., & Chen, H. H. (2010). Spectrum sharing in cognitive radio networks—An auction-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(3), 587–596. https://doi.org/10.1109/TSMCB.2009.2034630.

    Article  Google Scholar 

  37. Wang, Z., Jiang, L., & He, C. (2015). Price-based power control algorithm in cognitive radio networks based on monotone optimization. Journal of Shanghai Jiaotong University (Science), 20(6), 654–659. https://doi.org/10.1007/s12204-015-1673-0.

    Article  Google Scholar 

  38. Wu, G., Ren, P., & Du, Q. (2012). Dynamic spectrum auction with time optimization in cognitive radio networks. In IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). https://doi.org/10.1109/VTCFall.2012.6398966.

  39. Xie, L., Xiang, J., & Zhang, Y. (2008). Revenue-based admission control for cognitive radio cellular systems. In Third international conference on communications and networking in China. ChinaCom 2008 (pp. 1200–1204) https://doi.org/10.1109/CHINACOM.2008.4685241.

  40. Yu, H., Gao, L., Li, Z., Wang, X., & Hossain, E. (2010). Pricing for uplink power control in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1769–1778.

    Article  Google Scholar 

  41. Zhan, S. C., & Chang, S. C. (2016). Double auction design for short-interval and heterogeneous spectrum sharing. IEEE Transactions on Cognitive Communications and Networking, 2(1), 83–94. https://doi.org/10.1109/TCCN.2016.2570799.

    Article  Google Scholar 

  42. Zhang, Y., Lee, C., Niyato, D., & Wang, P. (2013). Auction approaches for resource allocation in wireless systems: A survey. IEEE Communications Surveys Tutorials, 15(3), 1020–1041. https://doi.org/10.1109/SURV.2012.110112.00125.

    Article  Google Scholar 

  43. Zhao, Q., Wang, B., & Li, X. (2016). Two classes of improved quickest spectrum sensing approaches in cognitive radio. Wireless Personal Communications, 91(2), 755–769. https://doi.org/10.1007/s11277-016-3494-3.

    Article  Google Scholar 

  44. Zhu, Y., Sun, W., Yu, J., Liu, T., & Li, B. (2014). Distributed spectrum sharing in cognitive radio networks: A pricing-based decomposition approach. International Journal of Distributed Sensor Networks,. https://doi.org/10.1155/2014/262137.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by CSIC (R&D Groups) and a CAP-UdelaR scholarship. The authors would like to thank Laura Aspirot, Paola Bermolen, Paola Romero and Federico Larroca for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudina Rattaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Proposition 1

Inequality holds for \(n=0\) by definition. Assuming the inequality holds for \(n-1\), we show that it holds for n. We divide the problem in two cases: preempted and non-preempted situations.

Proof

  • Case 1 \(b_1x+b_2(y+1) \le C-b_1\);

    $$\begin{aligned} V_n(x,y+1)= & \lambda '_1 V_{n-1}(x+1,y+1) \end{aligned}$$
    (6)
    $$\begin{aligned}&+\, \lambda '_2 \max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \end{aligned}$$
    (7)
    $$\begin{aligned}&+\,\mu '_1 x V_{n-1}(x-1,y+1) \end{aligned}$$
    (8)
    $$\begin{aligned}&+\, \mu '_2 y V_{n-1}(x,y) \end{aligned}$$
    (9)
    $$\begin{aligned}&+\, \mu '_2 V_{n-1}(x,y) \end{aligned}$$
    (10)
    $$\begin{aligned}&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+1)\right) V_{n-1}(x,y+1) \end{aligned}$$
    (11)
    $$\begin{aligned} V_n(x,y)= & {} \lambda '_1 V_{n-1}(x+1,y) \end{aligned}$$
    (12)
    $$\begin{aligned}&+\, \lambda '_2 \max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\} \end{aligned}$$
    (13)
    $$\begin{aligned}&+\, \mu '_1 x V_{n-1}(x-1,y) \end{aligned}$$
    (14)
    $$\begin{aligned}&+\, \mu '_2 y V_{n-1}(x,y-1) \end{aligned}$$
    (15)
    $$\begin{aligned}&+\, \mu '_2 V_{n-1}(x,y) \end{aligned}$$
    (16)
    $$\begin{aligned}&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+1)\right) V_{n-1}(x,y) \end{aligned}$$
    (17)

    Please note that (6) \(\le\) (12), (8) \(\le\) (14), (9) \(\le\) (15), (11) \(\le\) (17) are proved directly by induction assumption. On the other hand (10) \(=\) (16).

    Following we show the justification of (7) \(\le\) (13):

    1. 1.

      If (\(\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}=V_{n-1}(x,y+1)\) and

      \(\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}=V_{n-1}(x,y)\)) or

      (\(\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}=V_{n-1}(x,y+2)+b_2R\) and

      \(\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}=V_{n-1}(x,y+1)+b_2R\)), the inequality is a direct consequence of induction hypothesis.

    2. 2.

      If (\(\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}=V_{n-1}(x,y+1)\) and

      \(\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}=V_{n-1}(x,y+1)+b_2R\)), it is simple to note the validity of the demonstration because \(R>0\).

    3. 3.

      If (\(\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}=V_{n-1}(x,y+2)+b_2R\) and

      \(\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}=V_{n-1}(x,y)\)), then we have that \(V_{n-1}(x,y)>V_{n-1}(x,y+1)+b_2R\ge V_{n-1}(x,y+2)+b_2R\).

  • Case 2 \(C-b_1 < b_1x+b_2(y+1) \le C\);

    According to Eq. (1), we define the number of preempted SUs (z and \(z'\)) as

    \(z=\left[ \frac{b_1x+b_2(y+1)-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2(y+1)-C+b_1)\%b_2 \ne 0\right\} }\right]\) and

    \(z'=\max \left\{ \left[ \frac{b_1x+b_2y-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2y-C+b_1)\%b_2 \ne 0\right\} }\right] ,0 \right\}\); we have:

    $$\begin{aligned} V_n(x,y+1)= & {} \lambda '_1 (V_{n-1}(x+1,y+1-z)-zb_2K) \end{aligned}$$
    (18)
    $$\begin{aligned}&+\, \lambda '_2 \max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \end{aligned}$$
    (19)
    $$\begin{aligned}&+\, \mu '_1 x V_{n-1}(x-1,y+1) \end{aligned}$$
    (20)
    $$\begin{aligned}&+\, \mu '_2 y V_{n-1}(x,y) \end{aligned}$$
    (21)
    $$\begin{aligned}&+\, \mu '_2 V_{n-1}(x,y) \end{aligned}$$
    (22)
    $$\begin{aligned}&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+1)\right) V_{n-1}(x,y+1) \end{aligned}$$
    (23)
    $$\begin{aligned} V_n(x,y)= & {} \lambda '_1 (V_{n-1}(x+1,y-z')-z'b_2K) \end{aligned}$$
    (24)
    $$\begin{aligned}&+\, \lambda '_2 \max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\} \end{aligned}$$
    (25)
    $$\begin{aligned}&+ \,\mu '_1 x V_{n-1}(x-1,y) \end{aligned}$$
    (26)
    $$\begin{aligned}&+\, \mu '_2 y V_{n-1}(x,y-1) \end{aligned}$$
    (27)
    $$\begin{aligned}&+\, \mu '_2 V_{n-1}(x,y) \end{aligned}$$
    (28)
    $$\begin{aligned}&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+1)\right) V_{n-1}(x,y) \end{aligned}$$
    (29)

    On one hand, we have (22) \(=\) (28); and (20) \(\le\) (26), (21) \(\le\) (27), (23) \(\le\) (29) are proved directly with the hypothesis of induction. On the other hand, the proof of (19) \(\le\) (25) is analogous to the previous case.Footnote 2 Finally, please note that \(z'=z-1\) and \(K>0\), then the inequality (18) \(\le\) (24) is proved.

\(\square\)

Appendix B: Proof of Proposition 2

Proof

Inequality holds for \(n=0\) by definition. Assuming the inequality holds for \(n-1\), we show that it holds for n. We divide the problem in two cases: preempted and non-preempted situations.

  • Case 1 \(b_1x+b_2(y+1) \le C-b_1\);

    $$\begin{aligned} V_n(x,y+1)-V_n(x,y)&= \lambda '_1 (V_{n-1}(x+1,y+1)-V_{n-1}(x+1,y)) \\&\quad+\, \lambda '_2 \max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \\&\quad- \,\lambda '_2 \max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\} \\&\quad+\, \mu '_1 x (V_{n-1}(x-1,y+1)-V_{n-1}(x-1,y)) \\&\quad+\, \mu '_2 y (V_{n-1}(x,y)-V_{n-1}(x,y-1)) \\&\quad+\, \mu '_2 V_{n-1}(x,y) - \mu '_2 V_{n-1}(x,y) \\&\quad+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+1)\right) (V_{n-1}(x,y+1)\\&\quad-\,V_{n-1}(x,y)) \ge -b_2K \end{aligned}$$

    Using induction hypothesis we have \(V_n(x,y+1)-V_n(x,y) \ge (1-\lambda '_2-\alpha ')(-b_2K)-\mu '_2 (V_{n-1}(x,y+1)-V_{n-1}(x,y)) +\lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}-\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\})\). We can observe that the second term is always positive or zero (being zero the worst case). Then, if \(K\ge R\) we can prove that \(\lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}-\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\})\ge -\lambda '_2b_2K\). This proves the result \(\forall \alpha\).

  • Case 2 \(C-b_1 < b_1x+b_2(y+1) \le C\);

    In the same way as in the previous case, we define z and \(z'\) as

    \(z=\left[ \frac{b_1x+b_2(y+1)-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2(y+1)-C+b_1)\%b_2 \ne 0\right\} }\right]\) and

    \(z'=\max \left\{ \left[ \frac{b_1x+b_2y-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2y-C+b_1)\%b_2 \ne 0\right\} }\right] ,0 \right\}\); we have:

    $$\begin{aligned} V_n(x,y+1)-V_n(x,y)= & {}\, \lambda '_1 (V_{n-1}(x+1,y+1-z)-zb_2K-V_{n-1}(x+1,y-z')+z'b_2K) \\&+\, \lambda '_2 \max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \\&- \,\lambda '_2 \max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\} \\&+\, \mu '_1 x (V_{n-1}(x-1,y+1)-V_{n-1}(x-1,y)) \\&+\, \mu '_2 y (V_{n-1}(x,y)-V_{n-1}(x,y-1)) \\&+\, \mu '_2 V_{n-1}(x,y) - \mu '_2 V_{n-1}(x,y) \\&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+1)\right) (V_{n-1}(x,y+1) \\&-\, V_{n-1}(x,y)) \ge -b_2K \end{aligned}$$

    We can observe that \(z'=z-1\) and using the same arguments as in case 1, the proof is completed. When we have to evaluate the terms that implies the decision (the maximization), we have used that \(K\ge R\).

\(\square\)

Appendix C: Proof of Proposition 3

Proof

Inequality holds for \(n=0\) by definition. Assuming the inequality holds for \(n-1\), we show that it holds for n. We divide the problem in two cases: preempted and non-preempted situations.

  • Case 1 \(b_1(x+1)+b_2(y+1) \le C-b_1\);

    $$\begin{aligned} V_n(x+1,y+1) -V_n(x+1,y)= & {} \lambda '_1 (V_{n-1}(x+2,y+1) -V_{n-1}(x+2,y)) \end{aligned}$$
    (30)
    $$\begin{aligned}&+\, \lambda '_2 (\max \{V_{n-1}(x+1,y+1),V_{n-1}(x+1,y+2)+b_2R\} \nonumber \\&- \,\max \{V_{n-1}(x+1,y),V_{n-1}(x+1,y+1)+b_2R\}) \end{aligned}$$
    (31)
    $$\begin{aligned}&+\, \mu '_1 x (V_{n-1}(x,y+1) -V_{n-1}(x,y)) \end{aligned}$$
    (32)
    $$\begin{aligned}&+ \,\mu '_2 y (V_{n-1}(x+1,y) -V_{n-1}(x+1,y-1)) \end{aligned}$$
    (33)
    $$\begin{aligned}&+ \,\mu '_1 (V_{n-1}(x,y+1) -V_{n-1}(x,y)) \end{aligned}$$
    (34)
    $$\begin{aligned}&+ \,\left( C\left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 (x+1)-\mu '_2 (y+1)\right) \nonumber \\&(V_{n-1}(x+1,y+1) - V_{n-1}(x+1,y)) \end{aligned}$$
    (35)
    $$\begin{aligned} V_n(x,y+1)-V_n(x,y)= & {} \lambda '_1 (V_{n-1}(x+1,y+1) -V_{n-1}(x+1,y)) \end{aligned}$$
    (36)
    $$\begin{aligned}&+\, \lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \nonumber \\&-\, \max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}) \end{aligned}$$
    (37)
    $$\begin{aligned}&+\, \mu '_1 x (V_{n-1}(x-1,y+1) -V_{n-1}(x-1,y)) \end{aligned}$$
    (38)
    $$\begin{aligned}&+ \,\mu '_2 y (V_{n-1}(x,y) -V_{n-1}(x,y-1)) \end{aligned}$$
    (39)
    $$\begin{aligned}&+ \,\mu '_1 (V_{n-1}(x,y+1) -V_{n-1}(x,y)) \end{aligned}$$
    (40)
    $$\begin{aligned}&+ \,\left( C\left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 (x+1)-\mu '_2 (y+1)\right) \nonumber \\&(V_{n-1}(x,y+1) -V_{n-1}(x,y)) \end{aligned}$$
    (41)

    (30) \(\le\) (36), (32) \(\le\) (38), (33) \(\le\) (39), (35) \(\le\) (41) are proved directly by induction hypothesis. In addition, we have (34) \(=\) (40).

    The last inequality requires a degree of algebraic manipulation:

    $$\begin{aligned}&\lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}-\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}) \\&\quad = \lambda '_2 (\max \{V_{n-1}(x,y+2)-V_{n-1}(x,y+1)+b_2R,0\}\\&\qquad -\, \max \{V_{n-1}(x,y)-V_{n-1}(x,y+1),b_2R\}) \\&\quad = \lambda '_2 (\max \{V_{n-1}(x,y+2)-V_{n-1}(x,y+1)+b_2R,0\}\\&\qquad +\,\min \{-V_{n-1}(x,y)+V_{n-1}(x,y+1),-b_2R\}) \\&\quad \ge \lambda '_2 (\max \{V_{n-1}(x+1,y+2)-V_{n-1}(x+1,y+1)+b_2R,0\}\\&\qquad +\,\min \{-V_{n-1}(x+1,y)+V_{n-1}(x+1,y+1),-b_2R\}) \\&\quad = \lambda '_2 (\max \{V_{n-1}(x+1,y+1),V_{n-1}(x+1,y+2)+b_2R\}\\&\qquad -\,\max \{V_{n-1}(x+1,y),V_{n-1}(x+1,y+1)+b_2R\}) \end{aligned}$$
  • Case 2 \(C-b_1 < b_1(x+1)+b_2(y+1) \le C\);

    Defining z, \(z'\), \(z^+\) and \(z^*\) according to Eq. (1):

    $$\begin{aligned}&z=\left[ \frac{b_1(x+1)+b_2(y+1)-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1(x+1)+b_2(y+1)-C+b_1)\%b_2 \ne 0\right\} }\right] , \\&\quad z'=\max \left\{ \left[ \frac{b_1(x+1)+b_2y-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1(x+1)+b_2y-C+b_1)\%b_2 \ne 0\right\} }\right] ,0 \right\} , \\&\quad z^+=\max \left\{ \left[ \frac{b_1x+b_2(y+1)-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2(y+1)-C+b_1)\%b_2 \ne 0\right\} }\right] ,0 \right\} \hbox { and }\\&\quad z^*=\max \left\{ \left[ \frac{b_1x+b_2y-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2y-C+b_1)\%b_2 \ne 0\right\} }\right] ,0 \right\} , \end{aligned}$$
    $$\begin{aligned} V_n(x+1,y+1) -V_n(x+1,y)= & {} \,\lambda '_1 (V_{n-1}(x+2,y+1-z)-zb_2K) \nonumber \\&- \,\lambda '_1 (V_{n-1}(x+2,y-z')-z'b_2K) \end{aligned}$$
    (42)
    $$\begin{aligned}&+ \,\lambda '_2 (\max \{V_{n-1}(x+1,y+1),V_{n-1}(x+1,y+2)+b_2R\} \nonumber \\&-\, \max \{V_{n-1}(x+1,y),V_{n-1}(x+1,y+1)+b_2R\}) \end{aligned}$$
    (43)
    $$\begin{aligned}&+\, \mu '_1 x (V_{n-1}(x,y+1) -V_{n-1}(x,y)) \end{aligned}$$
    (44)
    $$\begin{aligned}&+\, \mu '_2 y (V_{n-1}(x+1,y) -V_{n-1}(x+1,y-1)) \end{aligned}$$
    (45)
    $$\begin{aligned}&+\, \mu '_1 (V_{n-1}(x,y+1) -V_{n-1}(x,y)) \end{aligned}$$
    (46)
    $$\begin{aligned}&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 (x+1)-\mu '_2 (y+1)\right) \nonumber \\&(V_{n-1}(x+1,y+1)-V_{n-1}(x+1,y)) \end{aligned}$$
    (47)
    $$\begin{aligned} V_n(x,y+1)-V_n(x,y)= & {} \,\lambda '_1 (V_{n-1}(x+1,y+1-z^+)-z^+b_2K) \nonumber \\&- \,\lambda _1(V_{n-1}(x+1,y-z^*)-z^*b_2K) \end{aligned}$$
    (48)
    $$\begin{aligned}&+\, \lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \end{aligned}$$
    (49)
    $$\begin{aligned}&-\,\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}) \nonumber \\&+\, \mu '_1 x (V_{n-1}(x-1,y+1) -V_{n-1}(x-1,y)) \end{aligned}$$
    (50)
    $$\begin{aligned}&+\, \mu '_2 y (V_{n-1}(x,y) -V_{n-1}(x,y-1)) \end{aligned}$$
    (51)
    $$\begin{aligned}&+\, \mu '_1 (V_{n-1}(x,y+1) -V_{n-1}(x,y)) \end{aligned}$$
    (52)
    $$\begin{aligned}&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 (x+1)-\mu '_2 (y+1)\right) \nonumber \\&(V_{n-1}(x,y+1)-V_{n-1}(x,y)) \end{aligned}$$
    (53)

    (42) \(\le\) (48) is valid according to Proposition 2 and observing that \(z'=z-1\) and \(z^*=z^+-1\). The other inequalities can be demonstrated in the same way as in the previous case. In particular, we have to be careful in the proof of (43) \(\le\) (49) in the scenarios where the number of allocated channels is greater \(C-b_2\).

\(\square\)

Appendix D: Proof of Proposition 4

Proof

Inequality holds for \(n=0\) by definition. Assuming the inequality holds for \(n-1\), we show that it holds for n. We divide the problem in two cases: preempted and non-preempted situations.

  • Case 1 \(b_1x+b_2(y+2) \le C-b_1\);

    $$\begin{aligned} V_n(x,y) -V_n(x,y+1)= & {} \lambda '_1 (V_{n-1}(x+1,y) -V_{n-1}(x+1,y+1)) \end{aligned}$$
    (54)
    $$\begin{aligned}&+\, \lambda '_2 (\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\} \end{aligned}$$
    (55)
    $$\begin{aligned}&-\,\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}) \nonumber \\&+\, \mu '_1 x (V_{n-1}(x-1,y) -V_{n-1}(x-1,y+1)) \end{aligned}$$
    (56)
    $$\begin{aligned}&+\, \mu '_2 y (V_{n-1}(x,y-1) -V_{n-1}(x,y)) \end{aligned}$$
    (57)
    $$\begin{aligned}&+\, \mu '_2 V_{n-1}(x,y) - \mu '_2 V_{n-1}(x,y+1) \end{aligned}$$
    (58)
    $$\begin{aligned}&+\, \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+2)\right) \nonumber \\&(V_{n-1}(x,y)-V_{n-1}(x,y+1)) \end{aligned}$$
    (59)
    $$\begin{aligned} V_n(x,y+1)-V_n(x,y+2)= & {} \lambda '_1 (V_{n-1}(x+1,y+1) -V_{n-1}(x+1,y+2)) \end{aligned}$$
    (60)
    $$\begin{aligned}&+\, \lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \end{aligned}$$
    (61)
    $$\begin{aligned}&-\,\max \{V_{n-1}(x,y+2),V_{n-1}(x,y+3)+b_2R\}) \nonumber \\&+\, \mu '_1 x (V_{n-1}(x-1,y+1) -V_{n-1}(x-1,y+2)) \end{aligned}$$
    (62)
    $$\begin{aligned}&+\, \mu '_2 y (V_{n-1}(x,y) -V_{n-1}(x,y+1)) \end{aligned}$$
    (63)
    $$\begin{aligned}&+\, \mu '_2 V_{n-1}(x,y) - \mu '_2 V_{n-1}(x,y+1) \end{aligned}$$
    (64)
    $$\begin{aligned}&+\, \left( C\left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+2)\right) \nonumber \\&(V_{n-1}(x,y+1)-V_{n-1}(x,y+2)) \end{aligned}$$
    (65)

    The relations (54) \(\le\) (60), (56) \(\le\) (62), (57) \(\le\) (63) and (59) \(\le\) (65) are direct consequences of the induction hypothesis. The (58) and (64) terms cancel out each other. Next we show that (61) \(\ge\) (55):

    $$\begin{aligned}&\lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}-\max \{V_{n-1}(x,y+2),V_{n-1}(x,y+3)+b_2R\}) \\&\quad = \lambda '_2 (\max \{V_{n-1}(x,y+1)-V_{n-1}(x,y+2),b_2R\}-\max \{0,V_{n-1}(x,y+3)-V_{n-1}(x,y+2)+b_2R\}) \\&\quad = \lambda '_2 (\max \{V_{n-1}(x,y+1)-V_{n-1}(x,y+2),b_2R\}+\min \{0,-V_{n-1}(x,y+3)+V_{n-1}(x,y+2)-b_2R\}) \\&\quad \ge \lambda '_2 (\max \{V_{n-1}(x,y)-V_{n-1}(x,y+1),b_2R\}+\min \{0,-V_{n-1}(x,y+2)+V_{n-1}(x,y+1)-b_2R\}) \\&\quad = \lambda '_2 (\max \{V_{n-1}(x,y)-V_{n-1}(x,y+1),b_2R\}-\max \{0,V_{n-1}(x,y+2)-V_{n-1}(x,y+1)+b_2R\}) \\&\quad = \lambda '_2 (\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}-\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}) \end{aligned}$$
  • Case 2 \(C-b_1 <b_1x+b_2(y+2) \le C\);

    Defining z, \(z'\) and \(z^*\) according to Eq. (1):

    $$\begin{aligned} z= & {} \left[ \frac{b_1x+b_2(y+2)-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2(y+2)-C+b_1)\%b_2 \ne 0\right\} }\right] , \\ z'= & \max \left\{ \left[ \frac{b_1x+b_2(y+1)-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2(y+1)y-C+b_1)\%b_2 \ne 0\right\} }\right] ,0 \right\} \hbox { and}\\ z^*= & \max \left\{ \left[ \frac{b_1x+b_2y-C+b_1}{b_2}+{\mathbb {1}}_{\left\{ (b_1x+b_2y-C+b_1)\%b_2 \ne 0\right\} }\right] ,0 \right\} , \end{aligned}$$
    $$\begin{aligned} V_n(x,y) -V_n(x,y+1)= & {} \lambda '_1 (V_{n-1}(x+1,y-z^*) -z^*b_2K) \end{aligned}$$
    (66)
    $$\begin{aligned}&- \lambda '_1 (V_{n-1}(x+1,y+1-z')-z'b_2K) \nonumber \\&\lambda '_2 (\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\} \end{aligned}$$
    (67)
    $$\begin{aligned}&-\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}) \nonumber \\&+ \mu '_1 x (V_{n-1}(x-1,y) -V_{n-1}(x-1,y+1)) \end{aligned}$$
    (68)
    $$\begin{aligned}&+ \mu '_2 y (V_{n-1}(x,y-1) -V_{n-1}(x,y)) \end{aligned}$$
    (69)
    $$\begin{aligned}&+ \mu '_2 V_{n-1}(x,y) - \mu '_2 V_{n-1}(x,y+1) \end{aligned}$$
    (70)
    $$\begin{aligned}&+ \left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+2)\right) \nonumber \\&(V_{n-1}(x,y)-V_{n-1}(x,y+1)) \end{aligned}$$
    (71)
    $$\begin{aligned} V_n(x,y+1)-V_n(x,y+2)= & {} \lambda '_1 (V_{n-1}(x+1,y+1-z')-z'b_2K) \end{aligned}$$
    (72)
    $$\begin{aligned}&- \,\lambda '_1 (V_{n-1}(x+1,y+2-z)-zb_2K) \nonumber \\&+\, \lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\} \end{aligned}$$
    (73)
    $$\begin{aligned}&-\, \max \{V_{n-1}(x,y+2), V_{n-1}(x,y+3)+b_2R\}) \nonumber \\&+\, \mu '_1 x (V_{n-1}(x-1,y+1) -V_{n-1}(x-1,y+2)) \end{aligned}$$
    (74)
    $$\begin{aligned}&+ \,\mu '_2 y (V_{n-1}(x,y) -V_{n-1}(x,y+1)) \end{aligned}$$
    (75)
    $$\begin{aligned}&+ \,\mu '_2 V_{n-1}(x,y) - \mu '_2 V_{n-1}(x,y+1) \end{aligned}$$
    (76)
    $$\begin{aligned}&+ \,\left( C \left( \frac{\mu '_1}{b_1}+\frac{\mu '_2}{b_2}\right) -\mu '_1 x-\mu '_2 (y+2)\right) \nonumber \\&(V_{n-1}(x,y+1) -V_{n-1}(x,y+2)) \end{aligned}$$
    (77)

    (66) \(\le\) (72) is true according to Proposition 2 (in particular, the result of Proposition 2 is used in the limit case: \(z'=z^*=0\) ). The relations (68) \(\le\) (74), (69) \(\le\) (75) and (71) \(\le\) (77) are direct consequences of the induction hypothesis, and (70) \(=\) (76) is trivial. In order to analyze the inequality (67) \(\le\) (73) the same arguments as case 1 can be applied. It is important to highlight that if the number of busy resources in the system is greater than \(C-b_2\), the admission control decision has no sense (no SU will be accepted). So, if for example \(b_1x+b_2(y+2)>C-b_2\) (and \(b_1x+b_2(y+1)\le C-b_2\)), we can demonstrate the inequality in the following way: \(\lambda '_2 (\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R\}-V_{n-1}(x,y+2))=\lambda '_2 (\max \{V_{n-1}(x,y+1)-V_{n-1}(x,y+2),b_2R\}) \ge \lambda '_2 (\max \{V_{n-1}(x,y)-V_{n-1}(x,y+1),b_2R\})=\lambda '_2 (\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}-V_{n-1}(x,y+1) )\), then

    • if \(\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R \}=V_{n-1}(x,y+1)\) the proof is completed.

    • if \(\max \{V_{n-1}(x,y+1),V_{n-1}(x,y+2)+b_2R \}=V_{n-1}(x,y+2)+b_2R\), then

      $$\begin{aligned}&\lambda _2 (\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}-V_{n-1}(x,y+1)) \\&\quad \ge \lambda _2 (\max \{V_{n-1}(x,y),V_{n-1}(x,y+1)+b_2R\}-V_{n-1}(x,y+2)-b_2R) \end{aligned}$$

      and the proof is over.

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rattaro, C., Belzarena, P. Cognitive Radio Networks: Analysis of a Paid-Sharing Approach Based on Admission Control Decisions. Wireless Pers Commun 101, 2053–2083 (2018). https://doi.org/10.1007/s11277-018-5805-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5805-3

Keywords