Skip to main content
Log in

Concatenated LDPC-TCM Codes for Better Performance of OFDM-FSO System Using Gamma–Gamma Fading Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Various channel coding techniques have been used for free space optical (FSO) links to alleviate the effects of fading, induced due to turbulence. In this paper, the error rate performance is scrutinized for orthogonal frequency division multiplexing based FSO system with 16-QAM modulation, and the effect of several atmospheric turbulence conditions has been analyzed. Due to atmospheric turbulence, the arbitrary fluctuations of optical irradiance are modelled by widely used Gamma-gamma distribution model. The various channel coding schemes has been analyzed and a new hybrid coding scheme (the outer low-density parity check codes efficiently integrated with interleaved trellis code modulation codes) is developed, which has shown superior performance under all turbulence conditions and outperform the other individual coding schemes. The proposed hybrid scheme is analyzed for single antenna fading channels to achieve better error rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malik, A., & Singh, P. (2015). Free space optics: Current applications and future challenges. International Journal of Optics, 2015, 1–7.

    Article  Google Scholar 

  2. Joseph, S. P., & Mathew, M. (2015). A review on performance improvement techniques in wireless optical communication. International Journal of Science and Research, 4(8), 745–749.

    Google Scholar 

  3. Sadiku, M. N. O., Musa, S. M., & Nelatury, S. R. (2016). Free space optical communications: An overview. European Scientific Journal, 12(9), 55–68.

    Article  Google Scholar 

  4. Gupta, R., & Singh, P. (2014). Hybrid FSO-RF system: A solution to atmospheric turbulences in long Haul communication. International Journal of Scientific and Engineering Research, 5(11), 602–605.

    Google Scholar 

  5. Carneiro, V. G. A., Rodrigues, G. K., & Giraldi, M. T. M. (2012). Performance analysis of a 2D-double hard-limited OCDMA system over FSO link under strong turbulence for defense applications. In IEEE, (pp. 1–6).

  6. Uysal, M., Navidpour, S. M., & Li, J. (2004). Error rate performance of coded free-space optical links over strong turbulence channels. IEEE Communications Letters, 8(10), 435–437.

    Article  Google Scholar 

  7. Gupta, R. & Singh P (2016). “Performance analysis of FSO system for different fog conditions”. In Advances in Intelligent Systems and Computing, ICICCD-2016, (Vol. 479, pp. 181–187). Berlin: Springer.

  8. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2013). Optical wireless communications system and channel modelling (Vol. 378). Boca Raton: CRC Press Taylor and Francis Group.

    Google Scholar 

  9. Andrews, L. C., Phillips, R. L., & Hopen, C. Y. (2001). Laser Beam Scintillation with Applications. Bellingham, WA: SPIE Opt. Engg., Press.

    Book  Google Scholar 

  10. Garc´ıa-Zambrana, A., Castillo-V´azquez, B., & Castillo-V´azquez, C. (2012). Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors. Optics Expess, 20(3), 2096–2109.

    Article  Google Scholar 

  11. Singh, T. (2013). “Calculations of the impact on atmospheric turbulence conditions on free space optical communication links using gamma–gamma model”. In IEEE: ICCCNT.

  12. Navas, A. J., et al. (2011). “A unifying statistical model for atmospheric optical scintillation”, Numerical simulations of physical and engineering processes (pp. 181–206). Rijeka, Croatia: Intech.

    Google Scholar 

  13. Nistazakis, H. E., et al. (2015). QAM and PSK OFDM RoFSO Over M-turbulence induced fading channels. IEEE Photonics Journal, 7(1), 1–11.

    Article  Google Scholar 

  14. Ansari, I. S., Yilmaz, F., & Alouini, Mh S. (2015). Performance analysis of free-space optical links over M´alaga (M) turbulence channels with pointing errors. IEEE Transactions on Wireless Communications, 15, 1–11.

    Google Scholar 

  15. Wang, Y., Wang, D., & Ma, J. (2015). On the performance of coherent OFDM systems in free-space optical communications. IEEE Photonics Journal, 7(4), 1–10.

    MathSciNet  Google Scholar 

  16. Uysal, M., Li, J., & Yu, M. (2006). Error rate performance analysis of coded free-space optical links over gamma–gamma atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 5(6), 1229–1233.

    Article  Google Scholar 

  17. Ivan, B., Djordjevic, B., Vasic, A., & Neifeld, M. (2008). LDPC coded OFDM over the atmospheric turbulence channel. Optics Express, 15(10), 6336–6350.

    Google Scholar 

  18. Tsiftsis, T. A., et al. (2009). Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Transactions on Wireless Communications, Communications Letters, 8, 951–957.

    Article  Google Scholar 

  19. Kaushal, H., & Kaddoum, G. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys and Tutorials, 19, 57–96.

    Article  Google Scholar 

  20. Gupta, N. et al. (2011). Performance analysis of FSO communication using different coding schemes. In AIP Conference Proceedings, pp. 387–391.

  21. Hennigera, H. et al. (2008). Coding techniques to mitigate fading on free-space optical communication links. In Proceeding of SPIE-The International Society for Optics and Photonics.

  22. Nandaniya, J. S., Kalani, N. B., & Kulkarni, G. R. (2014). Comparative analysis of different channel coding techniques. International Journal of Computer Networks and Wireless Communications, 4(2), 84–89.

    Google Scholar 

  23. Joseph, A. (2009). Design of the high-speed framing, FEC, and interleaving hardware used in a 5.4 km free-space optical communication experiment. In Proceedings SPIE 7464.

  24. Fang, Xu, et al. (2009). Channel coding and time-diversity for optical wireless links. Optics Express, 17(2), 872–887.

    Article  Google Scholar 

  25. MacKay, D. J. C. (1999). Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45(2), 399–431.

    Article  MathSciNet  MATH  Google Scholar 

  26. . Kou, Y., Lin, S., & Fossorier, M. P. C. (2000). “Low density parity check codes: construction based on finite geometries. In Global Telecommunications Conference” GLOBECOM IEEE-2000, (Vol. 2, pp. 825–829).

  27. Djordjevic, I. B., Vasic, B., & Neifeld, M. A. (2007). LDPC coded OFDM over the atmospheric turbulence channel. Optics Express, 15(10), 6336–6350.

    Article  Google Scholar 

  28. Lin, M., et al. (2012). Rapid soft-decision trellis coded 32-QAM for Free space optical communication ACP technical digest. Washington: OSA.

    Google Scholar 

  29. Costas, N. G. (1989). Some implications of TCM for optical direct-detection channels. IEEE Transactions on Communications, 31(5), 481–487.

    Google Scholar 

  30. Grover, M., et al. (2017). Multibeam WDM-FSO system: An optimum solution for clear and hazy weather conditions. Wireless Personal Communications, 97, 5783–5795.

    Article  Google Scholar 

  31. Badar, N., & Jha, R. K. (2017). Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma-Gamma fading model. Optical and Quantum Electronics, 49, 192.

    Article  Google Scholar 

  32. Chaudhary, S., Amphawan, A., & Nisar, K. K. (2014). Realization of free space optics with OFDM under atmospheric turbulence. Optik-International Journal for Light and Electron Optics, 125, 5196–5198.

    Article  Google Scholar 

  33. Wang, Y., Wang, D., & Ma, J. (2015). On the performance of coherent OFDM systems in free-space optical communications. IEEE Photonics Journal, 7(4), 1–10.

    MathSciNet  Google Scholar 

  34. Yuan, J., et al. (2008). Forward error correction concatenated code in DWDM systems. Frontiers of Optoelectronics in China, 1(1), 20–24.

    Article  Google Scholar 

  35. Gong, Y., & Letaief, K. B. (2012). Concatenated space-time block coding with trellis coded modulation in fading channels. IEEE Transactions on Wireless Communications., 1(4), 580–590.

    Article  Google Scholar 

  36. Djordjevic, I., Xu, L., & Wang, T. (2010). Reverse concatenated code modulation for high speed optical communication. IEEE Journal on Photonic, 2(6), 1034–1039.

    Article  Google Scholar 

  37. Xie, N., et al. (2008). Concatenated low-density parity check and BCH coding system for magnetic recording read channel with 4 kB sector format. IEEE Transactions on Magnetics, 44(12), 4784–4789.

    Article  Google Scholar 

  38. Xu, Q., Gong, P., & Chan, T. M. (2014). “Concatenation LDPC-TCM coding for reliable storage in multilevel flash memories”. In IEEE.

  39. Mahdieh, M. H., & Pournoury, M. (2010). Atmospheric turbulence and numerical evaluation of bit error rate (BER) in free space communication. Optics and Laser Technology, 42(1), 55–60.

    Article  Google Scholar 

  40. Vorontsov, M. A. (2013). Bit error rate in free space optical communication systems with a partially coherent transmitting beam. Atmospheric and Oceanic Optics, 26(3), 185–189.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Kamal, T.S. & Singh, P. Concatenated LDPC-TCM Codes for Better Performance of OFDM-FSO System Using Gamma–Gamma Fading Model. Wireless Pers Commun 106, 2247–2260 (2019). https://doi.org/10.1007/s11277-018-5939-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5939-3

Keywords

Navigation