Skip to main content

Advertisement

Log in

Factors Affecting Retailer’s Adopti on of Mobile Payment Systems: A SEM-Neural Network Modeling Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The development of mobile commerce depends on extensively accepted mobile payment (MP) systems. Even though new MP methods have been gradually induced in the market, but their adoption has stayed modest. Little research has been conducted to examine and explain views of owners or managers of on the new payment technology. This paper explores retailer’s adoption of the mobile payment system; based on an extended model of technology–organization–environment (TOE) framework, eleven factors were theorized to describe retailer’s acceptance of MP systems. Data was collected from 188 retails stores. First, structural equation modeling (SEM) was applied to check which factor had a significant influence on MP adoption. Following, the neural network technique was used to rank the significant predictors attained from SEM. The results revealed that external pressure and relative advantages are the most important antecedents of the intention to use MP. The results of this study will be useful for MP providers/suppliers in making optimum strategies. Implications, limitation and future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sharma, A., & Sheth, J. N. (2004). Web-based marketing: The coming revolution in marketing thought and strategy. Journal of Business Research, 57, 696–702. https://doi.org/10.1016/S0148-2963(02)00350-8.

    Article  Google Scholar 

  2. Liébana, C., & Lara, R. (2017). Predictive and explanatory modeling regarding adoption of mobile payment systems. Technological Forecasting and Social Change, 120(March), 32–40. https://doi.org/10.1016/j.techfore.2017.04.002.

    Article  Google Scholar 

  3. Yang, J.-H., & Chang, C.-C. (2012). A low computational-cost electronic payment scheme for mobile commerce with large-scale mobile users. Wireless Personal Communications, 63(1), 83–99.

    Article  Google Scholar 

  4. Leong, L.-Y., Hew, T.-S., Wei-Han Tan, G., & Ooi, K.-B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2013.04.018.

    Article  Google Scholar 

  5. Chen, X., Choi, K., & Chae, K. (2017). A secure and efficient key authentication using bilinear pairing for NFC mobile payment service. Wireless Personal Communications, 97(1), 1–17.

    Article  Google Scholar 

  6. He, Y. (2013). Study of magnetic field coupling technologies in activating RFID-SIM card mobile payments. Wireless Personal Communications, 71(1), 243–254.

    Article  Google Scholar 

  7. Telegeography. (2015). Global mobile subscribers surpass seven billion. Retrieved from https://www.telegeography.com/products/commsupdate/articles/2015/07/28/global-mobile-subscribers-surpass-seven-billion/. Accessed 25 July 2017.

  8. Ghezzi, A., Renga, F., Balocco, R., & Pescetto, P. (2010). Mobile payment applications: offer state of the art in the Italian market. Info. https://doi.org/10.1108/14636691011071130.

    Article  Google Scholar 

  9. Kapoor, K., Dwivedi, Y. K., & Williams, M. D. (2013). Role of innovation attributes in explaining the adoption intention for the interbank mobile payment service in an Indian context. In Grand successes and failures in IT. Public and private sectors. Springer, Berlin. https://doi.org/10.1007/978-3-642-38862-0_13.

    Chapter  Google Scholar 

  10. Guo, J., & Bouwman, H. (2016). An ecosystem view on third party mobile payment providers: A case study of Alipay wallet. Info. https://doi.org/10.1108/info-01-2016-0003.

    Article  Google Scholar 

  11. Miao, M., & Jayakar, K. (2016). Mobile payments in Japan, South Korea and China: Cross-border convergence or divergence of business models? Telecommunications Policy. https://doi.org/10.1016/J.TELPOL.2015.11.011.

    Article  Google Scholar 

  12. Guo, J., & Bouwman, H. (2016). An analytical framework for an m-payment ecosystem: A merchants’ perspective. Telecommunications Policy, 40(2–3), 147–167. https://doi.org/10.1016/J.TELPOL.2015.09.008.

    Article  Google Scholar 

  13. Liébana, C., Sánchez, F., & Muñoz, L. (2014). The moderating effect of experience in the adoption of mobile payment tools in virtual social networks: The m-payment acceptance model in virtual social networks (MPAM-VSN). International Journal of Information Management, 34(2), 151–166. https://doi.org/10.1016/j.ijinfomgt.2013.12.006.

    Article  Google Scholar 

  14. Pal, D., Vanijja, V., & Papasratorn, B. (2015). An empirical analysis towards the adoption of NFC mobile payment system by the end user. Procedia Computer Science, 69, 13–25. https://doi.org/10.1016/j.procs.2015.10.002.

    Article  Google Scholar 

  15. Ting, H., Yacob, Y., Liew, L., & Lau, W. M. (2016). Intention to use mobile payment system: A case of developing market by ethnicity. Procedia—Social and Behavioral Sciences, 224(August 2015), 368–375. https://doi.org/10.1016/j.sbspro.2016.05.390.

    Article  Google Scholar 

  16. Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61(2016), 404–414. https://doi.org/10.1016/j.chb.2016.03.030.

    Article  Google Scholar 

  17. Gerpott, T. J., & Meinert, P. (2017). Who signs up for NFC mobile payment services? Mobile network operator subscribers in Germany. Electronic Commerce Research and Applications, 23, 1–13. https://doi.org/10.1016/j.elerap.2017.03.002.

    Article  Google Scholar 

  18. Martínez-Peláez, R., Toral-Cruz, H., Ruiz, J., & Velarde-Alvarado, P. (2015). P2PM-pay: Person to person mobile payment scheme controlled by expiration date. Wireless Personal Communications, 85(1), 289–304.

    Article  Google Scholar 

  19. Zhou, T. (2014). An empirical examination of initial trust in mobile payment. Wireless Personal Communications, 77(2), 1519–1531.

    Article  Google Scholar 

  20. Liébana-Cabanillas, F., Muñoz-Leiva, F., & Sánchez-Fernández, J. (2018). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 12(1), 25–64. https://doi.org/10.1007/s11628-017-0336-7.

    Article  Google Scholar 

  21. Cao, C., & Zhu, X. (2018). Strong anonymous mobile payment against curious third-party provider. Electronic Commerce Research. https://doi.org/10.1007/s10660-018-9302-2.

    Article  Google Scholar 

  22. Fu, H.-P., & Chang, T.-S. (2016). An analysis of the factors affecting the adoption of cloud consumer relationship management in the machinery industry in Taiwan. Information Development. https://doi.org/10.1177/0266666915623318.

    Article  Google Scholar 

  23. Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington: Lexington Books.

    Google Scholar 

  24. Ahani, A., Rahim, N. Z. A., & Nilashi, M. (2017). Forecasting social CRM adoption in SMEs: A combined SEM-neural network method. Computers in Human Behavior, 75, 560–578. https://doi.org/10.1016/j.chb.2017.05.032.

    Article  Google Scholar 

  25. Rahayu, R., & Day, J. (2015). Determinant factors of e-commerce adoption by SMEs in developing country: Evidence from Indonesia. Procedia - Social and Behavioral Sciences, 195, 142–150. https://doi.org/10.1016/j.sbspro.2015.06.423.

    Article  Google Scholar 

  26. Wang, Y., Li, H., Li, C., & Zhang, D. (2016). Factors affecting hotels’ adoption of mobile reservation systems: A technology–organization–environment framework. Tourism Management, 53, 163–172. https://doi.org/10.1016/j.tourman.2015.09.021.

    Article  Google Scholar 

  27. Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT innovation adoption in organizations. Journal of Engineering and Technology Management, 29(3), 358–390. https://doi.org/10.1016/j.jengtecman.2012.03.007.

    Article  Google Scholar 

  28. Molla, A., & Licker, P. S. (2005). eCommerce adoption in developing countries: A model and instrument. Information & Management, 42(6), 877–899. https://doi.org/10.1016/j.im.2004.09.002.

    Article  Google Scholar 

  29. Ghobakhloo, M., & Hong Tang, S. (2013). The role of owner/manager in adoption of electronic commerce in small businesses. Journal of Small Business and Enterprise Development. https://doi.org/10.1108/JSBED-12-2011-0037.

    Article  Google Scholar 

  30. Rogers, E. M., & York, N. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

    Google Scholar 

  31. Mallat, N., & Tuunainen, V. K. (2008). Exploring merchant adoption of mobile payment systems: An empirical study. e-Service Journal, 6(2), 24–57. https://doi.org/10.2979/esj.2008.6.2.24.

    Article  Google Scholar 

  32. Hung, S.-Y., Hung, W.-H., Tsai, C.-A., & Jiang, S.-C. (2010). Critical factors of hospital adoption on CRM system: Organizational and information system perspectives. Decision Support Systems, 48(4), 592–603. https://doi.org/10.1016/j.dss.2009.11.009.

    Article  Google Scholar 

  33. Anderson, E. W., Fornell, C., & Rust, R. T. (1997). Customer satisfaction, productivity, and profitability: Differences between goods and services. Marketing Science. https://doi.org/10.1287/mksc.16.2.129.

    Article  Google Scholar 

  34. ShaoyiLiao, S., Li, Q., & JingjunXu, D. (2005). A Bayesian network-based framework for personalization in mobile commerce applications. Commerce Applications, 15(15), 494–511.

    Google Scholar 

  35. Morosan, C. (2014). Toward an integrated model of adoption of mobile phones for purchasing ancillary services in air travel. International Journal of Contemporary Hospitality Management, 26(2), 246–271. https://doi.org/10.1108/IJCHM-11-2012-0221.

    Article  Google Scholar 

  36. Choi, J., Seol, H., Lee, S., Cho, H., & Park, Y. (2008). Customer satisfaction factors of mobile commerce in Korea. Internet Research, 18(3), 313–335. https://doi.org/10.1108/10662240810883335.

    Article  Google Scholar 

  37. Shao Yeh, Y., & Li, Y. (2009). Building trust in m-commerce: contributions from quality and satisfaction. Online Information Review, 33(6), 1066–1086. https://doi.org/10.1108/14684520911011016.

    Article  Google Scholar 

  38. Venkatesh, V., Ramesh, V., & Massey, A. P. (2003). Understanding usability in mobile commerce. Communications of the ACM, 46(12), 53–56. https://doi.org/10.1145/953460.953488.

    Article  Google Scholar 

  39. Wang, W., & Li, H. (2012). Factors influencing mobile services adoption: a brand-equity perspective. Internet Research, 22(2), 142–179. https://doi.org/10.1108/10662241211214548.

    Article  Google Scholar 

  40. Liébana, C., Marinković, V., & Kalinić, Z. (2017). A SEM-neural network approach for predicting antecedents of m-commerce acceptance. International Journal of Information Management, 37(2), 14–24. https://doi.org/10.1016/j.ijinfomgt.2016.10.008.

    Article  Google Scholar 

  41. Anwar, S., & Prasad, R. (2018). Framework for future telemedicine planning and infrastructure using 5G technology. Wireless Personal Communications, 100(1), 193–208. https://doi.org/10.1007/s11277-018-5622-8.

    Article  Google Scholar 

  42. de Sena Abrahão, R., Moriguchi, S. N., & Andrade, D. F. (2016). Intention of adoption of mobile payment: An analysis in the light of the Unified Theory of Acceptance and Use of Technology (UTAUT). RAI Revista de Administração e Inovação, 13(3), 221–230. https://doi.org/10.1016/j.rai.2016.06.003.

    Article  Google Scholar 

  43. Premkumar, G., & Roberts, M. (1999). Adoption of new information technologies in rural small businesses. The International Journal of Management Science, 27(4), 467–484. https://doi.org/10.1016/S0305-0483(98)00071-1.

    Article  Google Scholar 

  44. Zhu, K., Dong, S., Xu, S. X., & Kraemer, K. L. (2006). Innovation diffusion in global contexts: determinants of post-adoption digital transformation of European companies. European Journal of Information Systems, 15, 601–616. https://doi.org/10.1057/palgrave.ejis.3000650.

    Article  Google Scholar 

  45. Choi, S.-O., Kim, S.-H., Lee, D.-Y., & Park, J.-K. (2016). Factors influencing the state anxiety of nursing students before initial clinical experience. Indian Journal of Science and Technology, 9(41), 1–8. https://doi.org/10.17485/ijst/2016/v9i41/103902.

    Article  Google Scholar 

  46. Kuan, K. K. Y., & Chau, P. Y. K. (2001). A perception-based model for EDI adoption in small businesses using a technology–organization–environment framework. Information & Management, 38(8), 507–521. https://doi.org/10.1016/S0378-7206(01)00073-8.

    Article  Google Scholar 

  47. Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. Management Information Systems Quarterly, 36(1), 157–178.

    Article  Google Scholar 

  48. Morosan, C., & DeFranco, A. (2016). It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17–29. https://doi.org/10.1016/j.ijhm.2015.11.003.

    Article  Google Scholar 

  49. Teo, T. S. H., Lin, S., & Lai, K.-H. (2009). Adopters and non-adopters of e-procurement in Singapore: An empirical study. Omega, 37, 972–987. https://doi.org/10.1016/j.omega.2008.11.001.

    Article  Google Scholar 

  50. Lin, H. F. (2014). Understanding the determinants of electronic supply chain management system adoption: Using the technology–organization–environment framework. Technological Forecasting and Social Change, 86, 80–92. https://doi.org/10.1016/J.TECHFORE.2013.09.001.

    Article  Google Scholar 

  51. Zhu, K., & Kraemer, K. L. (2005). Post-adoption variations in usage and value of e-business by organizations: Cross-country evidence from the retail industry. Information Systems Research, 16(1), 61–84. https://doi.org/10.1287/isre.1050.0045.

    Article  Google Scholar 

  52. Beaudry, A., Molson, J., & Pinsonneault, A. (2005). Understanding user responses to information technology: A coping model of user adaptation. MIS Quarterly, 29(3), 493–524.

    Article  Google Scholar 

  53. Lin, S. W. (2017). Identifying the critical success factors and an optimal solution for mobile technology adoption in travel agencies. International Journal of Tourism Research. https://doi.org/10.1002/jtr.2092.

    Article  Google Scholar 

  54. Barnes, S., & Böhringer, M. (2011). Modeling use continuance behavior in microblogging services: The case of Twitter. Journal of Computer Information Systems, 51(4), 1–10.

    Google Scholar 

  55. Sharma, S. K., Gaur, A., Saddikuti, V., & Rastogi, A. (2017). Structural equation model (SEM)-neural network (NN) model for predicting quality determinants of e-learning management systems. Behaviour & Information Technology, 36(10), 1053–1066. https://doi.org/10.1080/0144929X.2017.1340973.

    Article  Google Scholar 

  56. Ghobakhloo, M., Sadegh Sabouri, M., Sai Hong, T., & Zulkifli, N. (2011). Information technology adoption in small and medium-sized enterprises: An appraisal of two decades literature. Interdisciplinary Journal of Research in Business, 1(7), 53–80.

    Google Scholar 

  57. Thong, J. Y. L., & Yap, C. S. (1995). CEO characteristics, organizational characteristics and information technology adoption in small businesses. Omega, 23(4), 429–442. https://doi.org/10.1016/0305-0483(95)00017-I.

    Article  Google Scholar 

  58. Sharma, S. K. (2017). Integrating cognitive antecedents into TAM to explain mobile banking behavioral intention: A SEM-neural network modeling. Information Systems Frontiers. https://doi.org/10.1007/s10796-017-9775-x.

    Article  Google Scholar 

  59. Yang, X., & Sattayatham, P. (2016). Based on neural network approach predicting mobile payment adoption inclination determinants in Southeast Asia. Journal of Theoretical & Applied Information Technology, 87(1), 126–137.

    Google Scholar 

  60. Zoran, S., & Edwin, C. (2000). Mobile station positioning using GSM cellular phone and artificial neural networks. Wireless Personal Communications, 14(3), 235–254.

    Article  Google Scholar 

  61. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423.

    Article  Google Scholar 

  62. Khan, A. N., Ali, A., Khan, N. A., & Jehan, N. (2018). A study of relationship between transformational leadership and task performance: The role of social media and affective organisational commitment. International Journal of Business Information Systems.

  63. Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS Quarterly, 22, 7–16. https://doi.org/10.2307/249674.

    Article  Google Scholar 

  64. Yang, S., Liu, Y., & Wei, J. (2016). Social capital on mobile SNS addiction. Internet Research, 26(4), 982–1000. https://doi.org/10.1108/IntR-01-2015-0010.

    Article  Google Scholar 

  65. Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 173–191. https://doi.org/10.1287/isre.2.3.192.

    Article  Google Scholar 

  66. Al-Qirim, N. (2007). The adoption of eCommerce communications and applications technologies in small businesses in New Zealand. Electronic Commerce Research and Applications, 6(4), 462–473. https://doi.org/10.1016/j.elerap.2007.02.012.

    Article  Google Scholar 

  67. Saffu, K., Walker, J. H., & Hinson, R. (2008). Strategic value and electronic commerce adoption among small and medium-sized enterprises in a transitional economy. Journal of Business & Industrial Marketing. https://doi.org/10.1108/08858620810894445.

    Article  Google Scholar 

  68. Carmines, E. G., & McIver, J. P. (1981). Analyzing models with unobserved variables: Analysis of covariance structures. In G. W. Bohrnstedt & E. F. Borgatta (Eds.), Social measurement. Beverly Hills: Sage Publications.

    Google Scholar 

  69. Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (1992). Multivariate data analysis (6th ed.). New York: Macmillan.

    Google Scholar 

  70. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  71. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.

    Article  Google Scholar 

  72. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39.

    Article  Google Scholar 

  73. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.

    Article  Google Scholar 

  74. Harman, H. (1976). Modern factor analysis (3rd ed.). Chicago: The University of Chicago Press.

    MATH  Google Scholar 

  75. Eichhorn, R. B. (2014). Common methods variance techniques. Retrieved on 21 Oct 2016 from http://www.mwsug.org/proceedings/2014/AA/mwsug-2014-AA11.pdf.

  76. Pavlou, P. A., & El Sawy, O. A. (2006). From IT leveraging competence to competitive advantage in turbulent environments: The case of new product development. Information Systems Research. https://doi.org/10.1287/isre.1060.0094.

    Article  Google Scholar 

  77. Haykin, S. (2001). Neural networks: A comprehensive foundation. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  78. Pandey, A., Srivastava, J. K., Rajput, N. S., & Prasad, R. (2010). Crop parameter estimation of Lady finger by using different neural network training algorithms. Russian Agricultural Sciences, 36(1), 71–77.

    Article  Google Scholar 

  79. Fantacci, R., Mancini, L., Marini, M., & Tarchi, D. (2003). A neural network-based blind multiuser receiver for DS-CDMA communication systems. Wireless Personal Communications, 27(3), 195–213.

    Article  Google Scholar 

  80. Zheng, Z.-W. (2010). Receiver design for uplink multiuser code division multiple access communication system based on neural network. Wireless Personal Communications, 53(1), 67–79.

    Article  Google Scholar 

  81. Tan, G. W. H., Ooi, K. B., Chong, S. C., & Hew, T. S. (2014). NFC mobile credit card: The next frontier of mobile payment? Telematics and Informatics, 31(2), 292–307. https://doi.org/10.1016/j.tele.2013.06.002.

    Article  Google Scholar 

  82. Yeh, C.-H., Lee, G.-G., & Pai, J.-C. (2015). Using a technology-organization-environment framework to investigate the factors influencing e-business information technology capabilities. Information Development, 31(5), 435–450. https://doi.org/10.1177/0266666913516027.

    Article  Google Scholar 

  83. Jia, Q., Guo, Y., & Barnes, S. J. (2016). E2.0 post-adoption: Extending the IS continuance model based on the technology-organization-environment framework. Proceedings of the International Conference on Electronic Business (ICEB), 67, 695–707. https://doi.org/10.1016/j.chb.2016.10.022.

    Article  Google Scholar 

  84. Lou, H., Luo, W., & Strong, D. (2000). Perceived critical mass effect on groupware acceptance. European Journal of Information Systems, 9(2), 91–103. https://doi.org/10.1057/palgrave.ejis.3000358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nawaz Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.N., Ali, A. Factors Affecting Retailer’s Adopti on of Mobile Payment Systems: A SEM-Neural Network Modeling Approach. Wireless Pers Commun 103, 2529–2551 (2018). https://doi.org/10.1007/s11277-018-5945-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5945-5

Keywords