Skip to main content
Log in

Robust LCMV Beamformer for Direction of Arrival Mismatch Without Beam Broadening

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, we propose a new and efficient algorithm to mitigate the signal look direction error problem in adaptive beamforming without broadening the main beam. The algorithm exploits a reference lobe in the region of signal look direction error. This reference lobe is the main beam of the generalized sidelobe canceller when there is no direction of arrival mismatch for the desired signal. The desired pattern is forced to follow the reference beam in the region of signal look direction error by utilizing multiple additional constraints. Simulations are performed in MATLAB to check and test the validity of the proposed algorithm on the basis of different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khan, Z. U., Naveed, A., Qureshi, I. M., & Zaman, F. (2011). Independent null steering by decoupling complex weights. IEICE Electronics Express, 8, 1008–1013.

    Article  Google Scholar 

  2. Sharma, V., Wajid, I., Gershman, A. B., Chen, H., & Lambotharan, S. (2008). Robust downlink beamforming using positive semi-definite covariance constraints. In IEEE international ITG workshop on smart antennas (WSA 2008) (pp. 36–41).

  3. Byrne, D., O’Halloran, M., Jones, E., & Galvin, M. (2010). Transmitter-grouping robust capon beamforming for breast cancer detection. Progress in Electromagnetics Research, 108, 401–416.

    Article  Google Scholar 

  4. Gerlach, K., Shackelford, A. K., & Blunt, S. D. (2007). Combined multistatic adaptive pulse compression and adaptive beamforming for shared-spectrum radar. IEEE Journal of Selected Topics in Signal Processing, 1, 137–146.

    Article  Google Scholar 

  5. Akbar, S., Raja, M. A. Z., Zaman, F., et al. (2017). Design of bio-inspired heuristic techniques hybridized with sequential quadratic programming for joint parameters estimation of electromagnetic plane waves. Wireless Personal Communications, 96, 1475. https://doi.org/10.1007/s11277-017-4251-y.

    Article  Google Scholar 

  6. Zaman, F. (2017). Joint angle-amplitude estimation for multiple signals with L-structured arrays using bioinspired computing. Wireless Communications and Mobile Computing, 2017, 12. https://doi.org/10.1155/2017/9428196.

    Article  Google Scholar 

  7. Choi, Y. H. (2009). Null space projection based adaptive beamforming in the presence of array imperfections. IEICE Transactions on Communications, E92-B, 2762–2765.

    Article  Google Scholar 

  8. Elnashar, A., Elnoubi, S. M., & El-Mikati, A. (2006). Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Transactions on Antennas and Propagation, 54, 3647–3658.

    Article  Google Scholar 

  9. Wang, W., & Wu, R. (2011). A novel diagonal loading method for robust adaptive beamforming. Progress in Electromagnetics Research C, 18, 245–255.

    Article  Google Scholar 

  10. Du, L., Li, J., & Stoica, P. (2010). Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Transactions on Aerospace and Electronic Systems, 46, 449–458.

    Article  Google Scholar 

  11. Vorobyov, S. A., Gershman, A. B., & Luo, Z. Q. (2003). Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Transactions on Signal Processing, 52, 313–324.

    Article  Google Scholar 

  12. Chen, C. Y., & Vaidyanathan, P. P. (2007). Quadratically constrained beamforming robust against direction-of arrival mismatch. IEEE Transactions on Signal Processing, 55, 4139–4150.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, J., & Stoica, P. (2005). Robust adaptive beamforming. New York: Wiley-Interscience.

    Book  Google Scholar 

  14. Chang, A. C., Jen, C. W., & Su, I. J. (2007). Robust adaptive array beamforming based on independent component analysis with regularized constraints. IEICE Transactions on Communications, E90-B, 1791–1800.

    Article  Google Scholar 

  15. Tseng, C.-Y., & Griffiths, L. J. (1992). A unified approach to the design of linear constraints in minimum variance adaptive beamformers. IEEE Transactions on Antennas and Propagation, 40(12), 1533–1542.

    Article  Google Scholar 

  16. Griffiths, L. J., & Buckley, K. M. (1987). Quiescent pattern control in linearly constrained adaptive arrays. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35, 917–926.

    Article  Google Scholar 

  17. Arqub, O. A., et al. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing, 20.8, 3283–3302.

    Article  MATH  Google Scholar 

  18. Arqub, O. A., et al. (2017). Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing, 21.23, 7191–7206.

    Article  MATH  Google Scholar 

  19. Arqub, O. A. (2017). Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Computing and Applications, 28.7, 1591–1610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zafar Ullah Khan.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Definition of Important Terminologies

  1. (a)

    Adaptive Beamforming Adaptive beamforming is a spatial filtering technique that utilizes array of sensors to receive (or transmit) the signal from desired direction and to cancel interferences from the direction of jammers. For this purpose, the weights of the sensors are controlled adaptively through a suitable adaptive beamforming algorithm.

  2. (b)

    DOA Mismatch There are situations when the actual and presumed directions of source signals are not same due to environmental conditions or imperfection in element placement. Since beamforming algorithms are applied along presumed directions and in case of direction of arrival (DOA) mismatch, the signal from actual direction is considered as interference and is degraded by traditional beamforming algorithms. This problem is known as Direction of Arrival Mismatch Problem or Signal Look Direction Error Problem.

  3. (c)

    GSC Generalized side lobe canceller (GSC) is the alternate approach of LCMV beamformer. It has two branches as shown in block diagram of Fig. 2. In the fig., upper branch preserves the desired signal while lower branch is meant for interference cancellation.

  4. (d)

    LCMV Beamformer Linearly constrained minimum variance (LCMV) Beamformer is an adaptive beamforming technique to evaluate elemental weights by minimizing received signal output power while satisfying one or more linear equality constraints as given in expression (9) of the manuscript.

1.2 Derivation of \( {\mathbf{w}}_{LC} = {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}}({\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}})^{ - 1} {\mathbf{f}} \)

Equations (9) and (10) of the manuscript are reproduced below

$$ \mathop {\hbox{min} }\limits_{{\mathbf{w}}} {\mathbf{w}}^{H} {\mathbf{R}}_{y} {\mathbf{w}}\,\,\,{\text{Subject}}\,\,{\text{to}}\,\,k\,\,{\text{linear}}\,\,{\text{constraints}}\,\,{\mathbf{C}}^{H} {\mathbf{w}} = {\mathbf{f}} $$
(9)

The constraint matrix \( {\mathbf{C}} \) contains \( k \) steering vectors and \( {\mathbf{f}} \) is the gain vector corresponding to each steering vector contained in the matrix \( {\mathbf{C}} \). The solution to this optimization problem comes out to be,

$$ {\mathbf{w}}_{LC} = {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}}({\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}})^{ - 1} {\mathbf{f}} $$
(10)

Derivation A ULA of \( M \) elements has been considered. So \( {\mathbf{R}}_{y} \) is \( M \times M \) matrix. Let the \( M \times k \) matrix \( {\mathbf{C}} = [{\mathbf{a}}(\theta_{c1} ){\mathbf{a}}(\theta_{c2} ) \ldots {\mathbf{a}}(\theta_{ck} )] \) and \( {\mathbf{f}} = [f_{1} f_{2} \ldots f_{k} ]^{T} \) are constraint matrix and gain vector respectively. The cost function for the optimization problem expressed in (9) is given as under

$$ J = {\mathbf{w}}^{H} {\mathbf{R}}_{y} {\mathbf{w}} + \lambda_{1} ({\mathbf{w}}^{H} {\mathbf{a}}(\theta_{c1} ) - f_{1} ) + \cdots + \lambda_{k} ({\mathbf{w}}^{H} {\mathbf{a}}(\theta_{ck} ) - f_{k} ) $$
(i)

The derivative of the cost function comes out to be

$$ \frac{\partial J}{{\partial {\mathbf{w}}^{H} }} = {\mathbf{R}}_{y} {\mathbf{w}} + \lambda_{1} {\mathbf{a}}(\theta_{c1} ) + \cdots + \lambda_{k} {\mathbf{a}}(\theta_{ck} ) = {\mathbf{R}}_{y} {\mathbf{w}} + {\mathbf{C\lambda }} $$
(ii)

In Eq. (ii), \( {\varvec{\uplambda}} = [\lambda_{1} \lambda_{2} \cdots \lambda_{k} ]^{T} \) is the vector containing Lagrange multipliers \( \lambda_{1} ,\lambda_{2} , \ldots ,\lambda_{k} \)

For optimization of cost function, \( \frac{\partial J}{{\partial {\mathbf{w}}^{H} }} \) should be equal to null vector i.e.

$$ {\mathbf{R}}_{y} {\mathbf{w}} + {\mathbf{C\lambda }} = {\mathbf{0}} $$
(iii)
$$ {\mathbf{w}} = - {\mathbf{R}}_{y}^{ - 1} {\mathbf{C\lambda }} $$
(iv)

In order to find \( {\varvec{\uplambda}} \), expression (iii) is multiplied by \( {\mathbf{w}}^{H} \)

$$ {\mathbf{w}}^{H} {\mathbf{R}}_{y} {\mathbf{w}} + {\mathbf{w}}^{H} {\mathbf{C\lambda }} = {\mathbf{0}} $$
(v)
$$ {\mathbf{w}}^{H} {\mathbf{R}}_{y} {\mathbf{w}} + {\mathbf{f}}^{H} {\varvec{\uplambda}} = {\mathbf{0}} $$
(vi)

Putting value of \( {\mathbf{w}} \) from expression (iv) into (v)

$$ ( - {\mathbf{R}}_{y}^{ - 1} {\mathbf{C\lambda }})^{H} {\mathbf{R}}_{y} ( - {\mathbf{R}}_{y}^{ - 1} {\mathbf{C\lambda }}) + {\mathbf{f}}^{H} {\varvec{\uplambda}} = {\mathbf{0}} $$
(vii)
$$ ( - {\varvec{\uplambda}}^{H} {\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} ){\mathbf{R}}_{y} ( - {\mathbf{R}}_{y}^{ - 1} {\mathbf{C\lambda }}) + {\mathbf{f}}^{H} {\varvec{\uplambda}} = {\mathbf{0}} $$
(viii)
$$ {\varvec{\uplambda}}^{H} {\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} {\mathbf{C\lambda }} + {\mathbf{f}}^{H} {\varvec{\uplambda}} = {\mathbf{0}} $$
(ix)
$$ {\varvec{\uplambda}}^{H} {\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}} = - {\mathbf{f}}^{H} $$
(x)
$$ {\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} {\mathbf{C\lambda }} = - {\mathbf{f}} $$
(xi)
$$ {\varvec{\uplambda}} = - ({\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}})^{ - 1} {\mathbf{f}} $$
(xii)

Putting value of \( {\varvec{\uplambda}} \) from expression (xii) into (iv)

$$ {\mathbf{w}} = {\mathbf{w}}_{LC} = {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}}({\mathbf{C}}^{H} {\mathbf{R}}_{y}^{ - 1} {\mathbf{C}})^{ - 1} {\mathbf{f}} $$
(xiii)

This is the optimized weight vector for LCMV beamformer as given in Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z.U., Malik, A.N., Zaman, F. et al. Robust LCMV Beamformer for Direction of Arrival Mismatch Without Beam Broadening. Wireless Pers Commun 104, 21–36 (2019). https://doi.org/10.1007/s11277-018-6006-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6006-9

Keywords

Navigation