Skip to main content
Log in

Design and Performance Analysis of Fractal Regular Slotted-Patch Antennas for Ultra-Wideband Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents design of fractal regular slots patch antennas for Ultra-wideband (UWB) systems. The reference antenna is an UWB monopole rectangular patch antenna. Twenty proposed different fractal slots with regular configurations have been inserted randomly to the patch of the reference antenna to modify its characteristics and decrease the patch area. Four antennas cases out of these twenty proposed configurations are investigated in terms of the antennas different parameters including impedance bandwidth characteristics, radiation patterns, surface current distribution, gain, and group delay evaluation. The simulation and measurement results prove that the fractal slot configurations and positions create a filtering behavior in the form of mismatch band and band reject characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Federal Communications Commission. (2002). Revision of part 15 of the Commission’s Rules regarding ultra wideband transmission systems. First report and order, FCC 02, V48.

  2. Galvan-Tejada, G. M., Peyrot-Solis, M. A., & Aguilar, H. J. (2015). Ultra wideband antennas: Design, methodologies, and performance. Boca Raton: CRC Press.

    Book  Google Scholar 

  3. Azim, R., & Islam, M. T. (2013). Compact planar UWB antenna with band notch characteristics for WLAN and DSRC. Progress in Electromagnetics Research, 133, 391–406.

    Article  Google Scholar 

  4. Syed, A., & Aldhaheri, R. W. (2016). A very compact and low profile UWB planar antenna with WLAN band rejection. The Scientific World Journal, 2016, 7.

    Article  Google Scholar 

  5. Gianvittorio, J. P., & Samii, Y. R. (2002). Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas and Propagation Magazine, 44(1), 20–36.

    Article  Google Scholar 

  6. Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45(1), 38–57.

    Article  Google Scholar 

  7. Mirzapour, B., & Hassani, H. R. (2008). Size reduction and bandwidth enhancement of snowflake fractal antenna. IET Microwaves, Antennas & Propagation, 2(2), 180–187.

    Article  Google Scholar 

  8. Park, J. K., An, H. S., & Lee, J. N. (2008). Design of the tree-shaped UWB antenna using fractal concept. Microwave and Optical Technology Letters, 50(1), 144–150.

    Article  Google Scholar 

  9. Thakare, Y. B., & Kumar, R. (2010). Design of fractal patch antenna for size and radar cross-section reduction. IET Microwaves, Antennas & Propagation, 4(2), 175–181.

    Article  Google Scholar 

  10. Azari, A. (2011). A new super wideband fractal microstrip antenna. IEEE Transactions on Antennas and Propagation, 59(5), 1724–1727.

    Article  Google Scholar 

  11. Pourahmadazar, J., Ghobadi, C., & Nourinia, J. (2011). Novel modified pythagorean tree fractal monopole antennas for UWB applications. IEEE Antennas and Wireless Propagation Letters, 10, 484–487.

    Article  Google Scholar 

  12. Maza, A. R., Cook, B., Jabbour, G., & Shamim, A. (2012). Paper-based inkjet-printed ultra-wideband fractal antennas. IET Microwaves, Antennas and Propagation, 6(12), 1366–1373.

    Article  Google Scholar 

  13. Fallahi, H., & Atlasbaf, Z. (2013). Study of a class of UWB CPW-fed monopole antenna with fractal elements. IEEE Antennas and Wireless Propagation Letters, 12, 1484–1487.

    Article  Google Scholar 

  14. Reddy, V. V., & Sarma, N. V. S. N. (2014). Triband circularly polarized Koch fractal boundary microstrip antenna. IEEE Antennas and Wireless Propagation Letters, 13, 1057–1060.

    Article  Google Scholar 

  15. Amini, A., Oraizi, H., & Zadeh, M. A. C. (2015). Miniaturized UWB log-periodic square fractal antenna. IEEE Antennas and Wireless Propagation Letters, 14, 1322–1325.

    Article  Google Scholar 

  16. Ladhar, L., Zarouan, M., Oueslati, D., Floch, J.-M., & Rmili, H. (2015). Investigation on cellular-automata irregular-fractal ultra wideband slot-antennas. Microwave and Optical Technology Letters, 57(11), 2506–2514.

    Article  Google Scholar 

  17. Zhao, Y.-L., Jiao, Y.-C., Zhao, G., Zhang, L., Song, Y., & Wong, Z.-B. (2008). Compact planar monopole UWB antenna with band-notched characteristic. Microwave and Optical Technology Letters, 50(10), 2656–2658.

    Article  Google Scholar 

  18. Liu, H.-W., Chia-Hao, K., Wang, T.-S., & Yang, C.-F. (2010). Compact monopole antenna with band-notched characteristic for UWB applications. IEEE Antennas and Wireless Propagation Letters, 9, 397–400.

    Article  Google Scholar 

  19. Patil, S., & Rohokale, V. (2015). Multiband smart fractal antenna design for converged 5G wireless networks. In International conference on pervasive computing (ICPC), Pune (pp. 1–5).

  20. Abdalla, M. A., Ibrahim, A. A., & Boutejdar, A. (2015). Resonator switching techniques for notched ultra-wideband antenna in wireless applications. IET Microwaves, Antennas and Propagation, 9(13), 1468–1477.

    Article  Google Scholar 

  21. Zarrabia, F. B., Mansourib, Z., Gandjic, N. P., & Kuhestanib, H. (2016). Triple-notch UWB monopole antenna with fractal Koch and T-shaped stub. AEU—International Journal of Electronics and Communications, 70(1), 64–69.

    Article  Google Scholar 

  22. Yadav, A., Sethi, D., & Khanna, R. K. (2016). Slot loaded UWB antenna: Dual band notched characteristics. AEU International Journal of Electronics and Communications, 70(8), 331–335.

    Article  Google Scholar 

  23. Swedheetha, C., Suganya, M., Gunapandian, P., & Manimegalai, B. (2014). Minkowski fractal based antenna for cognitive radio. In IEEE international microwave and RF conference (IMaRC), Bangalore (pp. 166–169).

  24. Wei, K., Li, J. Y., Wang, L., Xing, Z. J., & Xu, R. (2016). Mutual coupling reduction by novel fractal defected ground structure bandgap filter. IEEE Transactions on Antennas and Propagation, 64(10), 4328–4335.

    Article  MathSciNet  MATH  Google Scholar 

  25. Tizyi, H., Riouch, F., Tribak, A., Najid, A., & Sanchez, A. M. (2016). CPW and microstrip line-fed compact fractal antenna for UWB-RFID applications. Progress in Electromagnetics Research C, 65, 201–209.

    Article  Google Scholar 

  26. Verma, I., Singh, P., Kumar, H., & Tripathy, M. R. (2016). Maple leaf planar fractal antenna for energy harvesting applications. In Proceeding of international conference on intelligent communication, control and devices, vol. 479 of the series advances in intelligent systems and computing (pp. 919–925). Singapore: Springer.

  27. Auer, T., & Held, M. (1996). RPG—Heuristics for the generation of random polygons. In 8th Canadian conference computational geometry (pp. 38–44).

  28. Del Valle, A. M., de Queiroz, T. A., Miyazawa, F. K., & Xavier, E. C. (2012). Heuristics for two-dimensional knapsack and cutting stock problems with items of irregular shape. Expert Systems with Applications, 39(16), 12589–12598.

    Article  Google Scholar 

  29. Hada, P. S. (2014). Approaches for generating 2D shapes. UNLV Theses, Dissertations, Professional Papers, and Capstones 2182. http://digitalscholarship.unlv.edu/thesesdissertations/2182.

  30. Ansoft Corporation. (2013). Ansoft high frequency structure simulator (HFSS), V15.0.2. Pittsburgh: Ansoft Corporation.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Professor Nihad I. Dib and his research team, at Electrical Engineering Department, Jordan University of Science and Technology, for their beneficial efforts and professional help during the fabrication and the measurement of the proposed structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Soliman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwairi, M.O., Soliman, M.S., Alahmadi, A.A. et al. Design and Performance Analysis of Fractal Regular Slotted-Patch Antennas for Ultra-Wideband Communication Systems. Wireless Pers Commun 105, 819–833 (2019). https://doi.org/10.1007/s11277-019-06123-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06123-5

Keywords

Navigation