Abstract
Implanted biological sensors in an in-vivo Wireless Body Area Network (WBAN) have a wide range of medical applications. However, such sensors generate heat while sensing or communicating data to the sink node or the base station. A rise in the temperature of a sensor node above a threshold may damage the surrounding tissues. In this paper, we propose a thermal aware routing algorithm that considers the priority of the data to be sent while maintaining the temperature within a permissible limit. The empirical studies show that the proposed routing algorithm achieves a higher packet delivery ratio and lower delivery latency as compared to the existing routing algorithms for Body Area Networks. It is also evident from the experimental analysis that the proposed algorithm ensures that more number of high priority packets reach the sink node. Moreover, the proposed algorithm has a uniform temperature distribution. The algorithmic procedure is designed in such a way that less number of the nodes are made hotspot nodes.















Similar content being viewed by others
References
Ababneh, N., Timmons, N., Morrison, J., & Tracey, D. (2012). Energy-balanced rate assignment and routing protocol for body area networks. In 26th International conference on advanced information networking and applications workshops, Fukuoka, Japan (pp. 466–471). IEEE.
Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.
Bag, A., & Bassiouni, M. A. (2006). Energy efficient thermal aware routing algorithms for embedded biomedical sensor networks. In IEEE international conference on mobile Adhoc and sensor systems (MASS), Vancouver, BC, Canada (pp. 604–609). IEEE.
Bag, A., & Bassiouni, M. A. (2007). Hotspot preventing routing algorithm for delay sensitive biomedical sensor networks. In IEEE international conference on portable information devices (PORTABLE07), Orlando, FL, USA (pp. 1–5). IEEE.
Caldeira, J. M. L. P., Rodrigues, J. J. P. C., Garcia, J. F. R., & de la Torre, I. (2010). A new wireless biosensor for intra-vaginal temperature monitoring. Sensors (Basel), 10(11), 10314–10327.
Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.
Demir, S. M., Al-Turjman, F., & Muhtaroglu, A. (2018). Energy scavenging methods for WBAN applications: A review. IEEE Sensors Journal, 18, 6477–6488.
Dewhirst, M. W., Viglianti, B. L., Lora-Michiels, M., Hoopes, P. J., & Hanson, M. A. (2003). Thermal dose requirement for tissue effect: Experimental and clinical findings. In Proceedings of SPIE-the international society for optical engineering, volume 4954 of 37.
Ha, I. (2015). Technologies and research trends in wireless body area networks for healthcare: A systematic literature review. International Journal of Distributed Sensor Networks - Special issue on Advances in Multimedia Sensor Networks for Health-Care and Related Applications, 4, 573538.
Hamalainen, M., & Li, X. (2017). Recent advances in body area network technology and applications. International Journal of Wireless Information Networks, 24(2), 63–64.
Hamalainen, M., Taparugssanagorn, A., & Iinatti, J. (2011). On the WBAN radio channel modelling for medical applications. In Proceedings of the 5th European conference on antennas and propagation (EUCAP), Rome, Italy (pp. 2967 – 2971). IEEE.
Hanson, M. A., Powell, H. C. P, Jr., Barth, A. T., Ringgenberg, K., Calhoun, B. H., Aylor, J. H., et al. (2009). Body aArea sensor networks: Challenges and opportunities. Computer, 42(1), 58–65.
Hu, F., Liu, X., Shao, M., Sui, D., & Wang, L. (2017). Wireless energy and information transfer in WBAN: An overview. IEEE Network, 31(3), 90–96.
Latre, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Journal of Wireless Networks, 17(1), 1–18.
Li, C., Li, H.-B., Kohno, R., & (2009). Performance evaluation of IEEE 802.15.4 for wireless body area network (WBAN). In 2009 IEEE International conference on communications workshops, Dresden, Germany. IEEE.
Lin, C.-T., Chuang, C.-H., Huang, C.-S., Tsai, S.-F., Lu, S.-W., Chen, Y.-H., et al. (2014). Wireless and wearable EEG system for evaluating driver vigilance. IEEE Transactions on Biomedical Circuits and Systems, 8(2), 165–176.
Negra, R., Jemili, I., & Belghith, A. (2016). Wireless body area networks: Applications and technologies. Procedia Computer Science, 83, 1274–1281.
Omeni, O., Wong, A. C. W., Burdett, A. J., & Toumazou, C. (2008). Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Transactions on Biomedical Circuits and Systems, 2(4), 251–259.
Saleem, K., Abbas, H., Al-Muhtadi, J., Orgun, M. A., Shankaran, R., Zhang, G. (2016). Empirical studies of ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm in E-health sensor platform. In 2016 IEEE 41st conference on local computer networks workshops (LCN Workshops), Dubai, United Arab Emirates. IEEE.
Samanta, A., & Misra, S. (2018). Dynamic connectivity establishment and cooperative scheduling for QoS-aware wireless body area networks. IEEE Transactions on Mobile Computing, 17, 2775–2788.
Schwiebert, L., Gupta, S., Auner, P., Abrams, G., Iezzi, R., & McAllister, P. (2002). A biomedical smart sensor for visually impaired. IEEE Sensors, 1, 693–698.
Schwiebert, L., Gupta, S. K., & Weinmann, J. (2001). Research challenges in wireless networks of biomedical sensors. In Proceedings of the 7th annual international conference on mobile computing and networking (MobiCom ’01), Rome, Italy (pp.151–165).
Sonawane, P. D., & Sutar, R. G. (2017). A schematic review on body area networks for E-health systems. In 2017 International conference on intelligent computing and control (I2C2), Coimbatore, India. IEEE.
Sund-Levander, M., Forsberg, C., & Wahren, L. (2002). Normal oral, rectal, tympanic and axillary body temperature in adult men and women: A systematic literature review. Scandinavian Journal of Caring Sciences, 16(2), 122–8.
Takahashi, D., Xiao, Y., & Hu, F. (2007). LTRT: Least total-route temperature routing for embedded biomedical sensor networks. In IEEE global telecommunications conference (GLOBECOM ’07), Washington, DC, USA (pp. 641–645). IEEE.
Tang, Q., Tummala, N., Gupta, S. K. S., & Schwiebert, L. (2005). TARA: Thermal-aware routing algorithm for implanted sensor networks. In Proceedings of intl. conference on distributed computing in sensor systems (DCOSS) (Vol. 3560, pp. 206–217). Berlin, Heidelberg: Springer.
Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094.
Wang, H., Peng, D., Wang, W., Sharif, H., hwa Chen, H., & Khoynezhad, A. (2010). Resource-aware secure ECG healthcare monitoring through body sensor networks. IEEE Wireless Communications, 17(1), 12–19.
Yang, G.-Z., Aziz, O., Kwasnicki, R., Merrifield, R., Darzi, A., & Lo, B. (2014). Body sensor networks (2nd ed.). London: Springer.
Yang, S., Lu, J.-L., Kong, L., Shu, W., & Wu, M.-Y. (2013). Poster: Behavior-aware probabilistic routing for wireless body area sensor networks. In 2013 IEEE conference on computer communications workshops (INFOCOM WKSHPS), Turin, Italy. IEEE.
Yarmolenko, P. S., Moon, E. J., Landon, C., Manzoor, A., Hochman, D. W., Viglianti, B. L., et al. (2011). Thresholds for thermal damage to normal tissues: An update. International Journal of Hyperthermia, 27(4), 320–343.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
Rights and permissions
About this article
Cite this article
Kathe, K.S., Deshpande, U.A. A Thermal Aware Routing Algorithm for a Wireless Body Area Network. Wireless Pers Commun 105, 1353–1380 (2019). https://doi.org/10.1007/s11277-019-06148-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-019-06148-w