Skip to main content

Advertisement

Log in

Secrecy Outage Analysis of an Untrusted Relaying Energy Harvesting System with Multiple Eavesdroppers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study the secrecy outage probability of an untrusted relaying energy-harvesting system in the presence of an eavesdropper network, which chooses the best eavesdropper to overhear much of the sources confidential signal. To degrade the overhearing capacity and give additional energy at the untrusted relay, the destination sends artificial noise signals during the communication. For secrecy outage evaluation, we derive the analytical expression for the secrecy outage probability (SOP) and a high-power approximation for the SOP. The accuracy of the analytical results is verified by Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nasir, A., Zhou, X., Durrani, S., & Kennedy, R. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  2. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rateenergy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  3. Tuan, V. P., & Kong, H. Y. (2018). Secure communication in untrusted relay selection networks with wireless energy harvesting. Wireless Networks, 25, 1431–1443.

    Article  Google Scholar 

  4. Xing, H., Liu, L., & Zhang, R. (2016). Secrecy wireless information and power transfer in fading wiretap channel. IEEE Transactions on Vehicular Technology, 65(1), 180–190.

    Article  Google Scholar 

  5. Lee, J. H., & Choi, W. (2014). Multiuser diversity for secrecy communications using opportunistic jammer selection: Secure DoF and jammer scaling law. IEEE Transactions on Signal Processing, 62(4), 828–839.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, H., Li, C., Huang, Y., & Yang, L. (2015). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19(8), 1347–1350.

    Article  Google Scholar 

  8. Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 174–177.

    Article  Google Scholar 

  9. Kalamkar, S. S., & Banerjee, A. (2017). Secure communication via a wireless energy harvesting untrusted relay. IEEE Transactions on Vehicular Technology, 66(3), 2199–2213.

    Article  Google Scholar 

  10. Tuan, V. P., & Kong, H. Y. (2018). Secure communication via an energy-harvesting untrusted relay with imperfect CSI. Annals of Telecommunications., 73, 341–352.

    Article  Google Scholar 

  11. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  12. Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., & Zwillinger, D. (2007). Table of Integral, Series and Products (7th ed.). Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Phu Tuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Proposition 1

The CDF of \(\gamma _e\) can be computed as

$$\begin{aligned} {F_{{\gamma _e}}}\left( y \right)&= \Pr \left( {\frac{{{\rho _s}{Y_1}}}{{{\rho _d}{Y_2} + 1}} < y} \right) \nonumber \\&= \int \limits _0^{ + \infty } {{F_{{Y_1}}}\left( {\frac{{y\left( {{\rho _d}{y_2} + 1} \right) }}{{{\rho _s}}}} \right) } {f_{{Y_2}}}\left( {{y_2}} \right) d{y_2}. \end{aligned}$$
(25)

The PDF of \(\gamma _e\) can be computed as

$$\begin{aligned} \frac{{d{F_{{\gamma _e}}}\left( y \right) }}{{dy}} = \frac{{{\rho _d}{y_2} + 1}}{{{\rho _s}}}\int \limits _0^{ + \infty } {{f_{{Y_1}}}\left( {\frac{{y\left( {{\rho _d}{y_2} + 1} \right) }}{{{\rho _s}}}} \right) } {f_{{Y_2}}}\left( {{y_2}} \right) d{y_2}. \end{aligned}$$
(26)

Using the PDF of \(Y_1\) given by (4) and PDF of \(Y_2\) given by (1), (26) can be expressed as

$$\begin{aligned} {f_{{\gamma _e}}}\left( y \right)&= \frac{{{\lambda _{{Y_1}}}{\lambda _{{y_2}}}}}{{{\rho _s}}}{e^{ - \frac{{k{\lambda _{{Y_1}}}}}{{{\rho _s}}}y}}\sum \limits _{k = 1}^K {k \left( {\begin{array}{c}K\\ k\end{array}}\right) {{\left( { - 1} \right) }^{k + 1}}} \nonumber \\&\quad \times \int \limits _0^{ + \infty } {\left( {{\rho _d}{y_2} + 1} \right) {e^{ - \left( {\frac{{k{\lambda _{{Y_1}}}{\rho _d}y}}{{{\rho _s}}} + {\lambda _{{y_2}}}} \right) {y_2}}}} d{y_2}. \end{aligned}$$
(27)

Using integration by parts, (27) can be rewritten as (10).

Appendix 2: Proof of Proposition 2

Using the PDF of \(X_2\) given by (1) and the CDF of \(X_1\) given by (2), (16) can be calculated as

$$\begin{aligned} {P_\text {sec,1}} = \int \limits _0^{{{{{\bar{x}}}}_1}} {{\lambda _{{X_2}}}{e^{ - {\lambda _{{X_2}}}{x_2}}}} d{x_2} + \int \limits _{{{{{\bar{x}}}}_1}}^{ + \infty } {\left( {1 - {e^{\frac{{{\lambda _{{X_1}}}\left( {\beta - 1} \right) }}{{\left( {1 - \theta } \right) {\rho _s}\varXi \left( {{X_2}} \right) }}}}} \right) } {\lambda _{{X_2}}}{e^{ - {\lambda _{{X_2}}}{x_2}}}d{x_2}. \end{aligned}$$
(28)

After some manipulations, \(P_\text {sec,1}\) can be expressed as in Proposition 2.

Appendix 3: Proof of Proposition 3

The expression in (18) can be rewritten as

$$\begin{aligned} {P_\text {sec,2}}&= \int \limits _{{{{{\bar{x}}}}_1}}^{ + \infty } {{f_{{{{X}}_2}}}\left( z \right) } \int \limits _{{\varXi _2}\left( {{X_2}} \right) }^{ + \infty } {{f_{{\gamma _e}}}\left( t \right) } \left( {F_{{X_1}}}\left( {\frac{{\beta t + \beta - 1}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {1 + \frac{\kappa }{z}} \right) } \right) \right. \nonumber \\&\quad \left. - {F_{{X_1}}}\left( {\frac{{\beta - 1}}{{\left( {1 - \theta } \right) {\rho _s}{\varXi _1}\left( z \right) }}} \right) \right) dyd{x_2} \nonumber \\&= \underbrace{\int \limits _{{{{{\bar{x}}}}_1}}^{ + \infty } {{f_{{X_2}}}\left( {{x_2}} \right) } {e^{ - \frac{{{\lambda _{{X_1}}}\left( {\beta - 1} \right) }}{{\left( {1 - \theta } \right) {\rho _s}{\varXi _1}\left( {{x_2}} \right) }}}}d{x_2}\int \limits _{{\varXi _2}\left( {{x_2}} \right) }^{ + \infty } {{f_{{\gamma _e}}}\left( y \right) } dy}_{{P_\text {sec,2,1}}} \nonumber \\&\quad - \underbrace{\int \limits _{{{{{\bar{x}}}}_1}}^{ + \infty } {{f_{{X_2}}}\left( {{x_2}} \right) } \int \limits _{{\varXi _2}\left( {{x_2}} \right) }^{ + \infty } {{f_{{\gamma _e}}}\left( y \right) } {e^{ - {\lambda _{{X_1}}}\frac{{\beta \left( {y + 1} \right) - 1}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {1 + \frac{\kappa }{{{x_2}}}} \right) }}dyd{x_2}}_{{P_\text {sec,2,2}}}. \end{aligned}$$
(29)

We focus on deriving the expression of \(P_\text {sec,2,2}\). Substituting the PDF of \(X_2\) given by (1) and the PDF of \(\gamma _e\) given by (10) in (29), and letting \(u = y - {\varXi _2}\left( {{x_2}} \right)\), \(P_\text {sec2,2}\) can be calculated as

$$\begin{aligned} {P_\text {sec,2,2}}&= {\lambda _{{X_2}}}\sum \limits _{k = 1}^K { \left( {\begin{array}{c}K\\ k\end{array}}\right) {{\left( { - 1} \right) }^{k + 1}}} \int \limits _{{{{{\bar{x}}}}_1}}^{ + \infty } {{e^{ - {\lambda _{{X_2}}}{x_2}}}} {e^{ - \frac{{{\lambda _{{X_1}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {1 + \frac{\kappa }{{{x_2}}}} \right) \left( {\beta {\varXi _2}\left( {{x_2}} \right) + \beta - 1} \right) - \frac{{k{\lambda _{{Y_1}}}}}{{{\rho _s}}}{\varXi _2}\left( {{x_2}} \right) }} \nonumber \\&\quad \times \left( {\underbrace{\int \limits _0^{ + \infty } {\frac{{{\lambda _{{y_2}}}{e^{ - \left( {\frac{{k{\lambda _{{Y_1}}}}}{{{\rho _s}}} + \frac{{\beta {\lambda _{{X_1}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {1 + \frac{\kappa }{{{x_2}}}} \right) } \right) u}}}}{{{\rho _d}\left( {u + {\varXi _2}\left( {{X_2}} \right) + {{{\beta _Y}} / k}} \right) }}} du}_{{I_1}} + \underbrace{\int \limits _0^{ + \infty } {\frac{{{\beta _Y}{e^{ - \left( {\frac{{k{\lambda _{{Y_1}}}}}{{{\rho _s}}} + \frac{{\beta {\lambda _{{X_1}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {1 + \frac{\kappa }{{{x_2}}}} \right) } \right) u}}}}{{k{{\left( {u + {\varXi _2}\left( {{X_2}} \right) + {{{\beta _Y}}/ k}} \right) }^2}}}} du}_{{I_2}}} \right) d{x_2}. \end{aligned}$$
(30)

Solving \(I_1\) and \(I_2\) with the help of [12, Eq. (3.352.4) and Eq. (3.353.3)], \(P_\text {sec,2,2}\) can be calculated as

$$\begin{aligned} {P_\text {sec,2,2}}&= {P_{\sec ,2,1}} + \frac{{{\beta _Y}\beta {\lambda _{{X_1}}}{\lambda _{{X_2}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\sum \limits _{k = 1}^K {\left( {\begin{array}{c}K\\ k\end{array}}\right) \frac{{{{\left( { - 1} \right) }^{k + 1}}}}{k}} {e^{\frac{{{\lambda _{{Y_2}}}}}{{{\rho _d}}} + \frac{{{\lambda _{{X_1}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {\frac{{\beta {\beta _Y}}}{k} - \beta + 1} \right) }} \nonumber \\&\quad \times \int \limits _{{{{{\bar{x}}}}_1}}^{ + \infty } {\left( {1 + \frac{\kappa }{{{x_2}}}} \right) } {e^{ - {\lambda _{{X_2}}}{x_2} + \frac{{{\lambda _{{X_1}}}\kappa }}{{\left( {1 - \theta } \right) {\rho _s}{x_2}}}\left( {\frac{{\beta {\beta _Y}}}{k} - \beta + 1} \right) }} \nonumber \\&\quad \times Ei\,\left( { - \frac{{{\varXi _2}\left( {{X_2}} \right) + {\textstyle {{{\beta _Y}} \over k}}}}{{{\rho _s}}}\left( {k{\lambda _{{Y_1}}} + \frac{{\beta {\lambda _{{X_1}}}}}{{\left( {1 - \theta } \right) }}\left( {1 + \frac{\kappa }{{{x_2}}}} \right) } \right) } \right) . \end{aligned}$$
(31)

By substituting (31) into (29), \(P_\text {sec,2}\) can be expressed as in (19).

Appendix 4: Proof of Proposition 5

Substituting the PDF of \(X_2\) given by (1), the PDF of \(\gamma _e\) given by (10), and the CDF of \(X_1\) given in (2), \(P_\text {sec,2}^\infty\) can be calculated as

$$\begin{aligned} P_{{\text {sec,2}}}^\infty&= \int \limits _{{{{{\bar{x}}}}_0}}^{ + \infty } {{\lambda _{{X_2}}}{e^{ - {\lambda _{{X_2}}}{x_2}}}} {e^{ - {\lambda _{{X_1}}}\frac{{\beta - 1}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {1 + \frac{\kappa }{{{x_2}}}} \right) }} \nonumber \\&\quad \times \left( {1 - \sum \limits _{k = 1}^K { \left( {\begin{array}{c}K\\ k\end{array}}\right) {{\left( { - 1} \right) }^{k + 1}}} \int \limits _0^{ + \infty } {\left( {\frac{{{\lambda _{{y_2}}}{e^{ - {{{{\mathcal {J}}}}}\left( {{x_2}} \right) y}}}}{{{\rho _d}\left( {y + {\textstyle {{{\beta _Y}} \over k}}} \right) }} + \frac{{{\beta _Y}{e^{ - {{{{\mathcal {J}}}}}\left( {{x_2}} \right) y}}}}{{k{{\left( {y + {\textstyle {{{\beta _Y}} \over k}}} \right) }^2}}}} \right) } dy} \right) d{x_2}, \end{aligned}$$
(32)

where \({{{{\mathcal {J}}}}}\left( {{x_2}} \right) = \frac{{\beta {\lambda _{{X_1}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\left( {1 + \frac{\kappa }{{{x_2}}}} \right) + \frac{{k{\lambda _{{Y_1}}}}}{{{\rho _s}}}\).

Solving the integrals in (32) with the help of [12, Eq. (3.352.4) and (3.353.3)], after some manipulations, \(P_\text {out,2}^\infty\) can be approximated as

$$\begin{aligned} P_{{\text {out,2}}}^\infty&= \frac{{{\beta _Y}\beta {\lambda _{{X_1}}}{\lambda _{{X_2}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\sum \limits _{k = 1}^K {\left( {\begin{array}{c}K\\ k\end{array}}\right) \frac{{{{\left( { - 1} \right) }^k}}}{k}} \nonumber \\&\quad \times \int \limits _{{{{{\bar{x}}}}_0}}^{ + \infty } {\left( {1 + \frac{\kappa }{{{x_2}}}} \right) {e^{ - {\lambda _{{X_2}}}{x_2}}}} Ei\left( { - {{{{\mathcal {J}}}}}\left( {{x_2}} \right) {\textstyle {{{\beta _Y}} \over k}}} \right) d{x_2}. \end{aligned}$$
(33)

Using [12, Eq.(8.214.1)], (33) can be approximated as

$$\begin{aligned} P_{{\text {out,2}}}^\infty&= \frac{{{\beta _Y}\beta {\lambda _{{X_1}}}{\lambda _{{X_2}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\sum \limits _{k = 1}^K { \left( {\begin{array}{c}K\\ k\end{array}}\right) \frac{{{{\left( { - 1} \right) }^k}}}{k}} \int \limits _{{{{{\bar{x}}}}_0}}^{ + \infty } {\left( {1 + \frac{\kappa }{{{x_2}}}} \right) {e^{ - {\lambda _{{X_2}}}{x_2}}}} \nonumber \\&\quad \times \ln \left( {\underbrace{\frac{{{\lambda _{{Y_2}}}}}{{{\rho _d}}}\left( {1 + \frac{{\beta {\lambda _{{X_1}}}}}{{k\left( {1 - \theta } \right) {\lambda _{{Y_1}}}}}} \right) }_{{I_1}} + \underbrace{\frac{{{\beta _Y}\beta {\lambda _{{X_1}}}\kappa }}{{k\left( {1 - \theta } \right) {\rho _s}}}}_{{I_2}}\frac{1}{{{x_2}}}} \right) d{x_2}. \end{aligned}$$
(34)

Using L’Hospital’s Rule, it is easy to show that \(I_2\) is dominant over \(I_1\), where \({x_2} \in \left[ {{x_0},M} \right)\) and \(M \ll + \infty\). Then, (34) can be rewritten as

$$\begin{aligned} P_{{\text {out,2}}}^\infty&= \frac{{{\beta _Y}\beta {\lambda _{{X_1}}}{\lambda _{{X_2}}}}}{{\left( {1 - \theta } \right) {\rho _s}}}\sum \limits _{k = 1}^K {\left( {\begin{array}{c}K\\ k\end{array}}\right) \frac{{{{\left( { - 1} \right) }^{k + 1}}}}{k}} \nonumber \\&\quad \times \underbrace{\int \limits _{{{{{\bar{x}}}}_0}}^{ + \infty } {\left( {1 + \frac{\kappa }{{{x_2}}}} \right) {e^{ - {\lambda _{{X_2}}}{x_2}}}} \ln \left( {{\rho _s}{x_2}} \right) d{x_2}}_{{I_3}}. \end{aligned}$$
(35)

With the help of [12, Eq. (4.337.1) and Eq. (3.351.5)], \(I_3\) is expressed as

$$\begin{aligned} {I_3}&= \frac{{{e^{ - {\lambda _{{X_2}}}{{{{\bar{x}}}}_0}}}\ln \left( {{\rho _2}{{{{\bar{x}}}}_0}} \right) }}{{{\lambda _{{X_2}}}}} - \left( {\kappa \ln \left( {{\rho _2}} \right) + \frac{1}{{{\lambda _{{X_2}}}}}} \right) Ei\left( { - {\lambda _{{X_2}}}{{{{\bar{x}}}}_0}} \right) \nonumber \\&\quad + \kappa \int \limits _{{{{{\bar{x}}}}_0}}^{ + \infty } {\frac{{\ln \left( {{x_2}} \right) }}{{{x_2}}}{e^{ - {\lambda _{{X_2}}}{x_2}}}} d{x_2}. \end{aligned}$$
(36)

With the help of Mathematica, Eq. (36) can rewritten as

$$\begin{aligned} {I_3}&= \frac{{{e^{ - {\lambda _{{X_2}}}{{{{\bar{x}}}}_0}}}\ln \left( {{\rho _2}{{{{\bar{x}}}}_0}} \right) }}{{{\lambda _{{X_2}}}}} - \left( {\kappa \ln \left( {{\rho _2}{{{{\bar{x}}}}_0}} \right) + \frac{1}{{{\lambda _{{X_2}}}}}} \right) Ei\left( { - {\lambda _{{X_2}}}{{{{\bar{x}}}}_0}} \right) \nonumber \\&\quad + \kappa G_{2,3}^{3,0}\left( {{\lambda _{{X_2}}}{{{{\bar{x}}}}_0}|_{0,0,0}^{1,1}} \right) . \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, V.P., Kong, H.Y. Secrecy Outage Analysis of an Untrusted Relaying Energy Harvesting System with Multiple Eavesdroppers. Wireless Pers Commun 107, 797–812 (2019). https://doi.org/10.1007/s11277-019-06301-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06301-5

Keywords

Navigation