Skip to main content

Advertisement

Log in

A Novel Energy Harvesting: Cluster Head Rotation Scheme (EH-CHRS) for Green Wireless Sensor Network (GWSN)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Sensor Network (WSN) serves as a better solution for remote unmanned monitoring situations. The harvesting capabilities in Green Wireless Sensor Network (GWSN) do not satisfy the real energy demand and it greatly determines the lifetime of the GWSN. The (a) excess harvesting leads energy overflow and (b) meager energy harvesting leads unavailability in monitoring of the event. The energy management favoring continuous monitoring in WSN is the problem addressed in this article. This article concentrates in creating a solution for energy outage and energy overflow problem in GWSN. The residual energy of the buffer and current harvesting rate is considered to create an energy efficient routing algorithm for GWSN. The energy arrival is poisson in nature, the energy harvesting, storing and utilization in the battery is realized as a Double Chain Markov Model. The algorithm proves to be energy efficient and delivers high throughput when compared with Stable Election Protocol (SEP) algorithm. The proposed Energy Harvesting—Cluster Head Rotation Scheme (EH-CHRS) algorithm minimizes the energy overflow and energy outage in the network by optimal Cluster Head (CH) selection and CH rotation method. The algorithm is analyzed with different harvesting rate λ = 1 and 2. The EH-CHRS algorithm also promotes reduced drop packet when compared to the SEP protocol. The algorithm also resist energy hole problem and HOT SPOT problem in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tang, Q., Yang, L., Giannakis, G. B., & Qin, T. (2007). Battery power efficiency of PPM and FSK in wireless sensor networks. IEEE Transaction on Wireless Communication, 6(4), 1308–1319.

    Article  Google Scholar 

  2. Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications., 61(7), 2988–3001.

    Article  Google Scholar 

  3. Lee, J. S., & Cheng, W. L. (2012). Fuzzy logic based clustering approach for wireless sensor networks using energy predictions. IEEE Sensors Journal., 12(9), 2891–2897.

    Article  Google Scholar 

  4. Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors J, 11(3), 565–573.

    Article  Google Scholar 

  5. Kanagachidambaresan, G. R., & Chitra, A. (2014). Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personnel Communications., 78(2), 247–260.

    Google Scholar 

  6. Kanagachidambaresan, G. R., & Chitra, A. (2016). TA-FSFT thermal aware fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communication, 90(4), 1935–1950.

    Article  Google Scholar 

  7. Kanagachidambaresan, G. R., & SarmaDhulipala, V. R. (2014). Cardiac care assistance using self configured sensor network—a remote patient monitoring system. Journal of The Institution of Engineers Series B, 95(2), 101–106.

    Article  Google Scholar 

  8. Kanagachidambaresan, G. R., SarmaDhulipala, V. R., Vanusha, D., & Udhaya, M. S. (2011). Matlab based modeling of body sensor network using ZigBee protocol. CIIT, 2011, 773–776.

    Google Scholar 

  9. Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transaction on Wireless Communication, 5(3), 531–539.

    Article  Google Scholar 

  10. Rajesh, R., Sharma, V., & Viswanath, P. (2014). Capacity of Gaussian channels with energy harvesting and processing cost. IEEE Transactions on Information Theory, 60(5), 2563–2575.

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, E., Yang, Q., Shen, Z., & Kwak, K. S. (2017). Distortion minimization in wireless sensor networks with energy harvesting. IEEE Communications Letters, 21(6), 1393–1396.

    Article  Google Scholar 

  12. Zhang, D., Chen, Z., Ren, J., Zhang, N., Awad, M. K., Zhou, H., et al. (2017). Energy-harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology, 66(1), 831–843.

    Article  Google Scholar 

  13. Akhtar, F., & Rehmani, M. H. (2017). Energy harvesting for self-sustainable wireless body area networks. IT Professional, 19(2), 32–40.

    Article  Google Scholar 

  14. Das, K., Zand, P., & Havinga, P. (2017). Industrial wireless monitoring with energy-harvesting devices. IEEE Internet Computing, 21(1), 1089–7801.

    Article  Google Scholar 

  15. Mosavat-Jahromi, H., Maham, B., & Tsiftsis, T. A. (2017). Maximizing spectral efficiency for energy harvesting-aware WBAN. IEEE Journal of Biomedical and Health Informatics, 21(3), 732–742.

    Article  Google Scholar 

  16. Ashraf, M., Shahid, A., Jang, J. W., & Lee, K.-G. (2017). Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks. IEEE Access, 5, 2169–3536.

    Google Scholar 

  17. Ruan, T., Chew, Z. J., & Zhu, M. (2017). Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors Journal, 17(7), 2165–2173.

    Article  Google Scholar 

  18. Kong, H.-B., Wang, P., Niyato, D., & Cheng, Y. (2017). Modeling and analysis of wireless sensor networks with/without energy harvesting using Ginibre point processes. IEEE Transactions on Wireless Communications, 16(6), 3700–3713.

    Article  Google Scholar 

  19. Li, W., Bassi, F., Dardari, D., Kieffer, M., & Pasolini, G. (2016). Defective sensor identication for WSNs involving generic local outlier detection tests. IEEE Transaction Signal Information processing Networks, 2, 29–48.

    Article  Google Scholar 

  20. Flint, I., Lu, X., Privault, N., Niyato, D., & Wang, P. (2015). Performance analysis of ambient RF energy harvesting with repulsive point process modeling. IEEE Transaction on Wireless Communication, 14, 5402–5416.

    Article  Google Scholar 

  21. Sakr, A. H., & Hossain, E. (2014).Analysis of multi-tier uplink cellular networks with energy harvesting and flexible cell association. in Procedding of IEEE Global Communication Conference (Globecom), Austin( pp. 4525–4530).

  22. Murthy, C. R. (2009). Power management and data rate maximization in wireless energy harvesting sensors. International Journal of Wireless Information Networks, 16, 102–117.

    Article  Google Scholar 

  23. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transaction Wireless Communication, 1, 660–670.

    Article  Google Scholar 

  24. Che, Y. L., Duan, L., & Zhang, R. (2015). Spatial throughput maximization of wireless powered communication networks. IEEE Journal on Selected Areas in Communication, 33, 1534–1548.

    Google Scholar 

  25. Agarwal, A., & Jagannatham, A. K. (2014). Distributed estimation in homogenous Poisson wireless sensor networks. IEEE Wireless Commun. Letters, 3, 90–93.

    Article  Google Scholar 

  26. Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz band. IEEE Transaction on Nano Technology, 11(3), 570–580.

    Article  Google Scholar 

  27. Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting- based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.

    Article  Google Scholar 

  28. Dong, Y., Wang, J., Shim, B., & Kim, D. I. (2016). DEARER: A distance and energy aware routing with energy reservation for energy harvesting wireless sensor networks. IEEE Journal on Selected Areas in Communications, 34(12), 3798–3813.

    Article  Google Scholar 

  29. Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Impact of battery degradation on optimal management policies of harvesting based wireless sensor devices. Proceedings IEEE, INFOCOM https://doi.org/10.1109/infcom.2013.6566841.

  30. Faisal, S., Javaid, N., Javaid, A., Khan, M. A., Bouk, S. H., & Khan, Z. A. (2013). Z-SEP: zonal-stable election protocol for wireless sensor networks. Journal of Basic and Applied Scientific Research (JBASR).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mahima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahima, V., Chitra, A. A Novel Energy Harvesting: Cluster Head Rotation Scheme (EH-CHRS) for Green Wireless Sensor Network (GWSN). Wireless Pers Commun 107, 813–827 (2019). https://doi.org/10.1007/s11277-019-06302-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06302-4

Keywords