Skip to main content

Advertisement

Delay-Constrained Data Transmission with Minimal Energy Consumption in Cognitive Radio/WiFi Vehicular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio benefits vehicular users to access massive and broadband services in a radio environment of limited spectrum. Reducing energy consumption is critical for energy-limited users and is also helpful to reduce greenhouse gas emission. This paper first proposes an energy-efficient transmission scheme in cognitive radio/WiFi vehicular networks, in which traffic is optimally distributed to cognitive radio and WiFi interfaces such that traffic is transmitted in an energy-efficient and timely manner. The traffic distribution problem is formulated as an optimization problem in which the amount of the energy of spectrum sensing and data transmission is minimized such that (1) data transmission is completed within a delay constraint and (2) the interference constraint of primary users and the power limitation of transmitters are satisfied. We prove that the optimization problem is a convex problem and does not always have a general solution. Due to the computation cost of the optimization problem, we propose a heuristic algorithm, namely, relay-weighted transmission, to solve the traffic distribution problem. Extensive numerical results show that the optimal transmission and the relay-weighted transmission schemes appropriately distribute data into the two radio interfaces such that the power consumption is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.

    Article  Google Scholar 

  2. Zheng, K., Zheng, Q., Chatzimisios, P., Xiang, W., & Zhou, Y. (2015). Heterogeneous vehicular networking: A survey on architecture, challenges, and solutions. IEEE Communication Surveys & Tutorials, 17(4), 2377–2396.

    Article  Google Scholar 

  3. Cordeschi, N., Amendola, D., & Baccarelli, E. (2015). Reliable adaptive resource management for cognitive cloud vehicular networks. IEEE Transactions on Vehicular Technology, 64(6), 2528–2537.

    Article  Google Scholar 

  4. Felice, M. D., Mohammady, R. D., Chowdhury, K. R., & Bononi, L. (2012). Smart radios for smart vehicles cognitive vehicular networks. IEEE Vehicular Technology Magazine, 7(2), 26–33.

    Article  Google Scholar 

  5. Singh, K. D., Rawat, P., & Bonnin, J.-M. (2014). Cognitive radio for vehicular ad hoc networks (CR-VANETs): Approaches and challenges. EURASIP Journal on Wireless Communications and Networking, 2014, 49.

    Article  Google Scholar 

  6. Gerasimenko, M., Moltchanov, D., Andreev, S., Koucheryavy, Y., Himayat, N., Yeh, S.-P., et al. (2017). Adaptive resource management strategy in practical multi-radio heterogeneous networks. IEEE Access, 5, 219–235.

    Article  Google Scholar 

  7. Cheng, X., et al. (2014). Electrified vehicles and the smart grid: The ITS perspective. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1388–1404.

    Article  Google Scholar 

  8. Yang, C., Fu, Y., Zhang, Y., Xie, S., & Yu, R. (2013). Energy-efficient hybrid spectrum access scheme in cognitive vehicular ad hoc networks. IEEE Communications Letters, 17(2), 329–332.

    Article  Google Scholar 

  9. Tian, D., Zhou, J., Sheng, Z., & Leung, V. C. M. (2016). Robust energy-efficient MIMO transmission for cognitive vehicular networks. IEEE Transactions on Vehicular Technology, 65(6), 3845–3859.

    Article  Google Scholar 

  10. Tsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 817–840.

    Article  Google Scholar 

  11. Wang, X. Y., & Ho, P. H. (2010). A novel sensing coordination framework for CR-VANETs. IEEE Transactions on Vehicular Technology, 59(4), 1936–1948.

    Article  Google Scholar 

  12. Liu, Y., Xie, S., Zhang, Y., Yu, R., & Leung, V. (2012). Energy-efficient spectrum discovery for cognitive radio green networks. ACM/Springer Mobile Networks and Applications, 17(1), 64–74.

    Article  Google Scholar 

  13. Godbole, A. S. (2002). Data Communications and Networks. New York City: Tata McGraw-Hill Education.

    Google Scholar 

  14. Goldsmith, A. J., & Chua, S.-G. (1997). Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.

    Article  Google Scholar 

  15. Stewart, J. (2016). Calculus: Early transcendentals. International metric edition (8th ed.). Boston: CENGAGE Learning Custom Publishing.

    Google Scholar 

  16. Zhuang, Y., Pan, J., Luo, Y., & Cai, L. (2011). Time and location-critical emergency message dissemination for vehicular ad-hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 187–196.

    Article  Google Scholar 

  17. ETSI EN 302 663 V1.2.0. (2012-11). Intelligent Transport Systems (ITS); Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band.

  18. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  19. Beck, A. (2014). Introduction to nonlinear optimization: Theory, algorithms, and applications with MATLAB. Phidelphia: SIAM.

    Book  MATH  Google Scholar 

  20. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13(4), 524–540.

    Article  Google Scholar 

  21. Balasubramanian, N., Balasubramanian, A., & Venkataramani, A. (2009). Energy consumption in mobile phones: A measurement study and implications for network applications. In Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference, Chicago, Illinois, USA (pp 280–293).

  22. Hameed Mir, Z., & Filali, F. (2014). LTE and IEEE 802.11p for vehicular networking: A performance evaluation. EURASIP Journal on Wireless Communications and Networking, 2014, 89.

    Article  Google Scholar 

  23. Zheng, K., Zheng, Q., Charzimisios, P., Xiang, W., & Zhou, Y. (2015). Heterogeneous vehicular networking: A survey on architecture, challenges and solutions. IEEE Communication Surveys & Tutorials, 17(4), 2377–2396. https://doi.org/10.1109/COMST.2015.2440103.

    Article  Google Scholar 

  24. Zoladek, H. (2000). The topological proof of Abel-Ruffini theorem. Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center, 16, 253–265.

    Article  MathSciNet  MATH  Google Scholar 

  25. Pesic, P. (2004). “Abel’s proof: An essay on the sources and meaning of mathematical unsolvability,” Appendix B. Cambridge: The MIT Press.

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology, Taiwan, under Grants MOST 103-2221-E-017-004- and MOST 104-2221-E-017-003-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Show-Shiow Tzeng.

Appendices

Appendix 1

1.1 Proof of Lemma 1

In order to proof the minimization of the total energy consumption is a convex problem [18], we must proof that (1) the objective function \(E(D_{sr})\) is a convex function with respect to \(D_{sr}\) and (2) the constraint functions are also convex functions with respective to \(D_{sr}\).

First, the second derivative of \(E(D_{sr})\) with respect to \(D_{sr}\) is given by

$$\begin{aligned} \frac{d^2E(D_{sr})}{d^2D_{sr}}=T\left( \frac{d^2p_{sb}}{d^2D_{sr}}+\frac{d^2p_{sr}}{d^2D_{sr}} +\frac{d^2p_{rb}}{d^2D_{sr}}\right) , \end{aligned}$$
(35)

where

$$\begin{aligned} \frac{d^2p_{sb}}{d^2D_{sr}}&=\frac{\varGamma _{sb} N_0}{{d_{sb}(\theta )}^{-r}} 2^{\frac{D}{n_s B_u T}} (ln2)^2 2^{\frac{-D_{sr}}{n_s B_u T}}\cdot (n_s B_u T)^{-2} >0, \end{aligned}$$
(36)
$$\begin{aligned} \frac{d^2p_{sr}}{d^2D_{sr}}&=\frac{\varGamma _{sr} N_0}{{d_{sr}}^{-r}} (ln2)^2 2^{\frac{D_{sr}}{B_w T}} ( B_w T)^{-2} >0, \end{aligned}$$
(37)
$$\begin{aligned} \frac{d^2p_{rb}}{d^2D_{sr}}&=\frac{\varGamma _{rb} (N_0 + p_{primary} h_{PB})}{{d_{rb}(\delta )}^{-r}} (ln2)^2 \cdot 2^{\frac{D_{sr}}{B_{rb} T}} ( B_{rb} T)^{-2} >0. \end{aligned}$$
(38)

Thus, the objective function is convex function due to \(\frac{d^2E(D_{sr})}{d^2D_{sr}} > 0\).

Second, the second derivative of \(g_i(D_{sr})\) with respect to \(D_{sr}\), where \(i=1, \ldots , 4\), are given by

$$\begin{aligned} \frac{d^2g_1}{d^2 D_{sr}}&=\frac{\varGamma _{rb} (N_0 + p_{primary} h_{PB})}{{d_{rb}(\delta )}^{-r}} (ln2)^2 2^{\frac{D_{sr}}{B_{rb} T}}\cdot ( B_{rb} T)^{-2} h_{RP}>0, \end{aligned}$$
(39)
$$\begin{aligned} \frac{d^2 g_2}{d^2 D_{sr}}&=\frac{\varGamma _{sr} N_0}{{d_{sr}}^{-r}} (ln2)^2 2^{\frac{D_{sr}}{B_w T}} ( B_w T)^{-2} >0,\end{aligned}$$
(40)
$$\begin{aligned} \frac{d^2 g_3}{d^2 D_{sr}}&=0,\end{aligned}$$
(41)
$$\begin{aligned} \frac{d^2 g_4}{d^2 D_{sr}}&=0. \end{aligned}$$
(42)

It follows that the constraint functions \(g_i\), where \(1 \le i \le 4\), are convex functions due to \(\frac{d^2g_i}{d^2 D_{sr}} \ge 0\), where \(1 \le i \le 4\). Combining (1) and (2), we can show that the minimization of the total energy consumption is a convex problem.

Appendix 2

Proof of Theorem 1

To solve the following equations:

$$\begin{aligned}&\nabla _{D_{sr}} E(D_{sr})+\sum _{i=1}^4 \mu _i \nabla _{D_{sr}} g_i(D_{sr})=0, \end{aligned}$$
(43)
$$\begin{aligned}&\mu _i g_i(D_{sr})=0, \quad \forall i=1, \ldots , 4,\end{aligned}$$
(44)
$$\begin{aligned}&\mu _i \ge 0, \quad \forall i=1, \ldots , 4. \end{aligned}$$
(45)

where

$$\begin{aligned} \frac{\partial E(D_{sr})}{\partial D_{sr}}&=T\left( \frac{\partial p_{sb}}{\partial D_{sr}}+\frac{\partial p_{sr}}{\partial D_{sr}} +\frac{\partial p_{rb}}{\partial D_{sr}}\right) , \end{aligned}$$
(46)
$$\begin{aligned} \frac{\partial p_{sb}}{\partial D_{sr}}&=\frac{\varGamma _{sb} N_0}{{d_{sb}(\theta )}^{-r}} 2^{\frac{D}{n_s B_u T}} (ln2) 2^{\frac{-D_{sr}}{n_s B_u T}} (-n_s B_u T)^{-1} ,\end{aligned}$$
(47)
$$\begin{aligned} \frac{\partial p_{sr}}{\partial D_{sr}}&=\frac{\varGamma _{sr} N_0}{{d_{sr}}^{-r}} (ln2) 2^{\frac{D_{sr}}{B_w T}} ( B_w T)^{-1} ,\end{aligned}$$
(48)
$$\begin{aligned} \frac{\partial p_{rb}}{\partial D_{sr}}&=\frac{\varGamma _{rb} (N_0 + p_{primary} h_{PB})}{{d_{rb}(\delta )}^{-r}} (ln2) 2^{\frac{D_{sr}}{B_{rb} T}} ( B_{rb} T)^{-1} ,\end{aligned}$$
(49)
$$\begin{aligned} \frac{\partial g_{1}}{\partial D_{sr}}&=h_{RP} \frac{\partial p_{rb}}{\partial D_{sr}},\end{aligned}$$
(50)
$$\begin{aligned} \frac{\partial g_{2}}{\partial D_{sr}}&=\frac{\partial p_{sr}}{\partial D_{sr}},\end{aligned}$$
(51)
$$\begin{aligned} \frac{\partial g_{3}}{\partial D_{sr}}&=1,\end{aligned}$$
(52)
$$\begin{aligned} \frac{\partial g_{4}}{\partial D_{sr}}&=-1. \end{aligned}$$
(53)

Expanding out and rearranging the Eq. (43), we could obtain the Eq. (54) as follows:

$$\begin{aligned} 2^{\frac{-D_{sr}}{n_s B_u T}}=a2^{\frac{D_{sr}}{B_w T}} + b2^{\frac{D_{sr}}{B_{rb}T}}+c, \end{aligned}$$
(54)

where

$$\begin{aligned} a&=\frac{\varGamma _{sr} N_0}{{d_{sr}}^{-r}} (ln2) ( B_w T)^{-1}(T+\mu _2) /d, \end{aligned}$$
(55)
$$\begin{aligned} b&=\frac{\varGamma _{rb} (N_0 + p_{primary} h_{PB})}{{d_{rb}(\delta )}^{-r}} (ln2) ( B_{rb} T)^{-1}(T+\mu _1 h_{RP})/d,\end{aligned}$$
(56)
$$\begin{aligned} c&=(\mu _3-\mu _4)/d,\end{aligned}$$
(57)
$$\begin{aligned} d&=\frac{\varGamma _{sb} N_0}{{d_{sb}(\theta )}^{-r}} 2^{\frac{D}{n_s B_u T}} (ln2) (n_s B_u T)^{-1}T . \end{aligned}$$
(58)

Replacing \(B_w\) and \(B_{rb}\) with \(n_w B_u\) and \(n_r B_u\) respectively and setting \(x=2^{\frac{D_{sr}}{n_s n_w n_r B_u T}}\), the Eq. (54) is transformed into a polynomial function of x as follows.

$$\begin{aligned} ax^{n_s n_r + n_w n_r} + bx^{n_s n_w + n_w n_r}+cx^{ n_w n_r}=1. \end{aligned}$$
(59)

Given that \(\mu _i^{*}, \forall i=1, \ldots , 4\), are solutions of \(\mu _i, \forall i=1, \ldots , 4\), if we would like to obtain the solution of the Eqs. (43)–(45), we shall first obtain the general solution of the Eq. (59). However, according to Abel-Ruffini theorem [24, 25] which states that there is no general solution for the polynomial functions of degree five or higher with arbitrary coefficients, the general solution does not always exist for the Eq. (59) because the degree of the polynomial function (59) is possibly greater than five. Therefore, the general solution of the Eqs. (43)–(45) does not always exist. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeng, SS., Lin, YJ. Delay-Constrained Data Transmission with Minimal Energy Consumption in Cognitive Radio/WiFi Vehicular Networks. Wireless Pers Commun 107, 1777–1797 (2019). https://doi.org/10.1007/s11277-019-06356-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06356-4

Keywords