Skip to main content

Advertisement

Log in

Novel Approach of Key Predistribution for Grid Based Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Grid based sensor networks are significant for applications such as monitoring goods in a warehouse, studying traffic level of city streets, monitoring energy consumptions through smart meters deployed in a colony of houses. We propose a novel Key Predistribution Scheme (KPS) for networks where objects being monitored form a square grid. The confidentiality and integrity of the data being communicated in grid based sensor networks are critical since, compromise to the same could reveal the personal traits of the consumer and any alteration of data could yield erroneous results. On the other hand, since the deployment of such a network is on the nodes that are typically resource constrained, devising the security protocols for such networks is challenging. Our focus in this work is on designing a KPS that requires less storage in terms of number of keys and providing same level of resilience as other existing KPSs. The proposed KPS requires only 3 keys per node for providing the same level of resilience as a pairwise KPS (considered to provide maximum resilience) that requires \(O(N-1)\) keys (N is the total number of nodes). To the best of our knowledge, this is the first attempt at considering linearity for designing a lightweight KPS and proposing a scheme that requires O(1) keys per node, and yet offering maximum resilience in grid based sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Chan, H., Perrig, A., & Song, D. (2003). Random key predistribution schemes for sensor networks. In 2003 symposium on security and privacy, 2003. Proceedings (pp. 197–213). Washington: IEEE.

  3. Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J., & Khalili, A. (2005). A pairwise key predistribution scheme for wireless sensor networks. ACM Transactions on Information and System Security (TISSEC), 8(2), 228–258.

    Article  Google Scholar 

  4. Camtepe, S. A., & Yener, B. (2004). Combinatorial design of key distribution mechanisms for wireless sensor networks. In European symposium on research in computer security (pp. 293–308). Berlin: Springer.

  5. Çamtepe, S. A., Yener, B., & Yung, M. (2006). Expander graph based key distribution mechanisms in wireless sensor networks. In 2006 IEEE international conference on communications (Vol. 5, pp. 2262–2267). Washington: IEEE.

  6. Chakrabarti, D., Maitra, S., & Roy, B. (2005). A hybrid design of key pre-distribution scheme for wireless sensor networks. In International conference on information systems security (pp. 228–238). Berlin: Springer.

  7. Delgosha, F., & Fekri, F. (2005). Key pre-distribution in wireless sensor networks using multivariate polynomials. In SECON (pp. 118–129).

  8. Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM conference on computer and communications security (pp. 41–47). New York: ACM.

  9. Hwang, J., & Kim, Y. (2004). Revisiting random key pre-distribution schemes for wireless sensor networks. In Proceedings of the 2nd ACM workshop on security of ad hoc and sensor networks (pp. 43–52). New York: ACM.

  10. Lee, J., & Stinson, D. R. (2005). A combinatorial approach to key predistribution for distributed sensor networks. Waterloo: Faculty of Mathematics, University of Waterloo.

    MATH  Google Scholar 

  11. Du, W., Deng, J., Han, Y. S., & Varshney, P. K. (2006). A key predistribution scheme for sensor networks using deployment knowledge. IEEE Transactions on Dependable and Secure Computing, 3(1), 62–77.

    Article  Google Scholar 

  12. Shah, K., & Jinwala, D. C. (2016). A secure expansive aggregation in wireless sensor networks for linear infrastructure. In Region 10 symposium (TENSYMP), 2016 IEEE (pp. 207–212). Washington: IEEE.

  13. Blackburn, S. R., Etzion, T., Martin, K. M., & Paterson, M. B. (2008). Efficient key predistribution for grid-based wireless sensor networks. In International conference on information theoretic security (pp. 54–69). Berlin: Springer.

  14. Golomb, S. W., & Taylor, H. (1984). Constructions and properties of costas arrays. Proceedings of the IEEE, 72(9), 1143–1163.

    Article  MATH  Google Scholar 

  15. Martin, K. M., & Paterson, M. B. (2009). Ultra-lightweight key predistribution in wireless sensor networks for monitoring linear infrastructure. In IFIP international workshop on information security theory and practices (pp. 143–152). Berlin: Springer.

  16. Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart gridthe new and improved power grid: A survey. IEEE Communications Surveys & Tutorials, 14(4), 944–980.

    Article  Google Scholar 

  17. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., et al. (2011). Smart grid technologies: communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.

    Article  Google Scholar 

  18. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., et al. (2013). A survey on smart grid potential applications and communication requirements. IEEE Transactions on Industrial Informatics, 9(1), 28–42.

    Article  Google Scholar 

  19. McDaniel, P., & McLaughlin, S. (2009). Security and privacy challenges in the smart grid. IEEE Security and Privacy, 7(3), 75–77.

    Article  Google Scholar 

  20. Metke, A. R., & Ekl, R. L. (2010). Security technology for smart grid networks. IEEE Transactions on Smart Grid, 1(1), 99–107.

    Article  Google Scholar 

  21. Liu, J., Xiao, Y., Li, S., Liang, W., & Chen, C. P. (2012). Cyber security and privacy issues in smart grids. IEEE Communications Surveys & Tutorials, 14(4), 981–997.

    Article  Google Scholar 

  22. Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18–28.

    Article  MathSciNet  Google Scholar 

  23. Amin, S. M., & Wollenberg, B. F. (2005). Toward a smart grid: Power delivery for the 21st century. IEEE Power and Energy Magazine, 3(5), 34–41.

    Article  Google Scholar 

  24. Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52–62.

    Article  Google Scholar 

  25. Masoum, M., Moses, P., & Deilami, S. (2010). Energy-efficient distribution in smart grid. In Innovative smart grid technologies (ISGT) (pp. 1–7).

  26. Fan, Z. (2012). A distributed demand response algorithm and its application to phev charging in smart grids. IEEE Transactions on Smart Grid, 3(3), 1280–1290.

    Article  Google Scholar 

  27. Potter, C. W., Archambault, A., & Westrick, K. (2009). Building a smarter smart grid through better renewable energy information. In Power systems conference and exposition, 2009. PSCE’09. IEEE/PES (pp. 1–5). Washington: IEEE.

  28. Rosenfeld, A. H., Bulleit, D. A., & Peddie, R. A. (1986). Smart meters and spot pricing: Experiments and potential. IEEE Technology and Society Magazine, 5(1), 23–28.

    Article  Google Scholar 

  29. Cecati, C., Citro, C., & Siano, P. (2011). Combined operations of renewable energy systems and responsive demand in a smart grid. IEEE Transactions on Sustainable Energy, 2(4), 468–476.

    Article  Google Scholar 

  30. Li, F., Qiao, W., Sun, H., Wan, H., Wang, J., Xia, Y., et al. (2010). Smart transmission grid: Vision and framework. IEEE Transactions on Smart Grid, 1(2), 168–177.

    Article  Google Scholar 

  31. Brown, R. E. (2008). Impact of smart grid on distribution system design. In Power and energy society general meeting-conversion and delivery of electrical energy in the 21st century, 2008 IEEE (pp. 1–4). Washington: IEEE.

  32. Wang, Z., & Wang, S. (2013). Grid power peak shaving and valley filling using vehicle-to-grid systems. IEEE Transactions on Power delivery, 28(3), 1822–1829.

    Article  Google Scholar 

  33. NIST, U. (2010). Guidelines for smart grid cyber security (Vol. 1–3). NIST IR-7628

  34. Locke, G., & Gallagher, P. D. (2010). Nist framework and roadmap for smart grid interoperability standards, release 1.0 (p. 33). Gaithersburg: National Institute of Standards and Technology.

    Google Scholar 

  35. Wei, D., Lu, Y., Jafari, M., Skare, P., & Rohde, K. (2010). An integrated security system of protecting smart grid against cyber attacks. In Innovative smart grid technologies (ISGT) (pp. 1–7). Washington: IEEE.

  36. Yan, Y., Qian, Y., & Sharif, H. (2011). A secure and reliable in-network collaborative communication scheme for advanced metering infrastructure in smart grid. In 2011 IEEE wireless communications and networking conference (pp. 909–914). Washington: IEEE.

  37. Vaidya, B., Makrakis, D., & Mouftah, H. T. (2011). Device authentication mechanism for smart energy home area networks. In 2011 IEEE international conference on consumer electronics (ICCE).

  38. Xia, J., & Wang, Y. (2012). Secure key distribution for the smart grid. IEEE Transactions on Smart Grid, 3(3), 1437–1443.

    Article  Google Scholar 

  39. Liu, N., Chen, J., Zhu, L., Zhang, J., & He, Y. (2013). A key management scheme for secure communications of advanced metering infrastructure in smart grid. IEEE Transactions on Industrial Electronics, 60(10), 4746–4756.

    Article  Google Scholar 

  40. Nicanfar, H., Jokar, P., Beznosov, K., & Leung, V. C. (2014). Efficient authentication and key management mechanisms for smart grid communications. IEEE Systems Journal, 8(2), 629–640.

    Article  Google Scholar 

  41. Kamto, J., Qian, L., Fuller, J., & Attia, J. (2011). Light-weight key distribution and management for advanced metering infrastructure. In 2011 IEEE GLOBECOM Workshops (GC Wkshps) (pp. 1216–1220). Washington: IEEE.

  42. He, D., Wang, H., Khan, M. K., & Wang, L. (2016). Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Communications, 10(14), 1795–1802.

    Article  Google Scholar 

  43. Mohaisen, A., & Nyang, D.-H. (2006). Hierarchical grid-based pairwise key predistribution scheme for wireless sensor networks. In European workshop on wireless sensor networks (pp. 83–98). Berlin: Springer.

  44. Mohaisen, A., Maeng, Y., & Nyang, D. (2007). On grid-based key pre-distribution: Toward a better connectivity in wireless sensor network. In Pacific-Asia conference on knowledge discovery and data mining (pp. 527–537). Berlin: Springer.

  45. Shah, K. A., & Jinwala, D. C. (2017). Novel approach for pre-distributing keys in WSNS for linear infrastructure. Wireless Personal Communications, 95(4), 3905–3921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal A. Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, K.A., Jinwala, D.C. Novel Approach of Key Predistribution for Grid Based Sensor Networks. Wireless Pers Commun 108, 939–955 (2019). https://doi.org/10.1007/s11277-019-06442-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06442-7

Keywords

Navigation