Skip to main content
Log in

Overlay Cognitive Radio Based on OFDM with Channel Estimation Issues

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) has been proposed as a technology to improve the spectrum efficiency by giving an opportunistic access of the licensed-user spectra to unlicensed users. We consider an overlay CR consisting of a primary macro-cell and cognitive small cells of cooperative secondary base stations (SBS). We suggest studying a CR where an orthogonal frequency division multiplexing is used for both the primary users (PU) and the secondary users (SU). In order to cancel the interferences, a precoding is required at the SBS. Therefore, we first derive the interferences expression due to SU at the PU receiver. Then, zero forcing beamforming (ZFBF) is considered to cancel the interferences. However, applying ZFBF depends on the channels between the SBS and the PU. A channel estimation is hence necessary. For this purpose, we propose to approximate the channel by an autoregressive process (AR) and to consider the channel estimation issue by using a training sequence. The received signals, also called the observations, are considered to be disturbed by an additive white measurement noise. In that case, the AR parameters and the channel can be jointly estimated from the received noisy signal by using a recursive approach. Nevertheless, the corresponding state space representation of the system is non-linear. Then, we propose to carry out a complementary study by compare non-linear Kalman filter based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In [12], the authors suggest switching from an overlay CR mode to an underlay one.

  2. The case of an additive measurement colored noise, and more particularly a noise that can be modeled by a moving average (MA) process is also considered in [26].

  3. For more information, the reader may refer to [29, 30].

  4. This assumption is considered to perform the ZFBF. This assumption does not decrease the spectral efficiency as it is in the ZFBF context and it is done by many authors such as [15, 31].

  5. As an alternative to SVD, QR factorization could be also considered.

  6. For the sake of simplicity \(h_s^{a,u}(n)\) in (2) is written as h(n).

  7. As mentioned before that for sake of simplicity and without loss of generality, we deal with the real part only, i.e., the real part of r(n), h(n), s(n) and b(n) are considered. The same procedure can be done when the imaginary parts are considered.

  8. The higher the chosen number of quadrature points is, the more accurate the results are.

References

  1. FCC, (2002). Spectrum policy task force report, ET Docket, No 02-155.

  2. Jovicic, A., & Viswanath, P. (2006). Cognitive radio: An information-theoretic perspective. In Proceedings of the IEEE international symposium on information theory (ISIT), pp. 2413–2417.

  3. Chen, J., & Wen, C. (2010). A novel cognitive radio adaptation for wireless multicarrier systems. IEEE Communications Letters, 14(7), 629–631.

    Article  Google Scholar 

  4. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. PhD thesis, Royal Institute of Technology (KTH) Sweden.

  5. Goldsmith, A., Jafar, S., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  6. Agrawal, G., & Banerjee, A. (2013). Stable throughput of an interweave cognitive radio system employing SR-ARQ protocol. In Proceedings of the European wireless conference (EW), pp. 1–5.

  7. Kouassi, B., Slock, D., Ghauri, I., & Deneire, L. (2013). Enabling the implementation of spatial interweave LTE cognitive radio. In Proceedings of the EURASIP-European signal processing conference (EUSIPCO), pp. 1–5.

  8. Senthuran, S., Anpalagan, A., Hyung, Y., Karmokar, A., & Das, O. (2014). An opportunistic channel access scheme for interweave cognitive radio systems. Journal of Communications and Networks, 16(1), 56–66.

    Article  Google Scholar 

  9. Chakravarthy, V., Wu, Z., Temple, M., Garber, F., & Li, X. (2008). Cognitive radio centric overlay/underlay waveform. In Proceedings of the IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN), pp. 1–10.

  10. Mina, D., & Paeiz, A. (2012). Joint power and rate allocation in CDMA-based underlay cognitive radio networks for a mixture of streaming and elastic traffic. EURASIP Journal on Wireless Communications and Networking, 10(262), 1–11.

    Google Scholar 

  11. Zhang, H., Ruyet, D., Roviras, D., & Sun, H. (2010). Capacity analysis of OFDM/FBMC based cognitive radio networks with estimated CSI. In Proceedings of the international conference on cognitive radio oriented wireless networks communications (CROWNCOM), pp. 1–5.

  12. Jinhyung, O., & Wan, C. (2010). A hybrid cognitive radio system: a combination of underlay and overlay approaches. In Proceedings of the IEEE vehicular technology conference (VTC), pp. 1–5.

  13. Abdou, A., Ferre, G., Grivel, E., & Najim, M. (2013). Interference cancelation in multiuser hybrid overlay cognitive radio. In Proceedings of the EURASIP-European signal processing conference (EUSIPCO).

  14. Li, L., Khan, F., Pesavento, M., & Ratnarajah, T. (2011). Power allocation and beamforming in overlay cognitive radio systems. In Proceedings of the IEEE vehicular technology conference (VTC), pp. 1–5.

  15. Ma, L., Liu, W., & Zeira, A. (2012). Making overlay cognitive radios practical. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp. 3145–3148.

  16. Sun, S., Ju, Y., & Yamao, Y. (2013). Overlay cognitive radio OFDM system for 4G cellular networks. IEEE Wireless Communications, 20(2), 68–73.

    Article  Google Scholar 

  17. Dent, P., Bottomley, G., & Croft, T. (1993). Jakes fading model revisited. Electronics Letters, 29(13), 1162–1163.

    Article  Google Scholar 

  18. Young, D., & Beaulieu, N. (2000). The generation of correlated Rayleigh random variates by inverse Fourier transform. Electronics Letters, 48(7), 1114–1127.

    Google Scholar 

  19. Grolleau, J., Grivel, E., & Najim, M. (2008). Two ways to simulate a Rayleigh fading channel based on a stochastic sinusoidal model. IEEE Signal Processing Letters, 15, 107–110.

    Article  Google Scholar 

  20. Jamoos, A., Grivel, E., Shakarneh, N., & Abdel Nour, H. (2011). Dual optimal filters for parameter estimation of a multivariate AR process from noisy observations. IET Signal Processing, 5(5), 471–479.

    Article  MathSciNet  Google Scholar 

  21. Jamoos, A., Grivel, E., Christov, N., & Najim, M. (2009). Estimation of autoregressive fading channels based on two cross-coupled H infinity filters. Signal, Image and Video Processing Journal, 3(3), 209–216.

    Article  MATH  Google Scholar 

  22. Baddour, K., & Beaulieu, N. (2005). Autoregressive modeling for fading channel simulation. IEEE Transactions on Wireless Communications, 4(4), 1650–1662.

    Article  Google Scholar 

  23. Merchan, F., Turcu, F., Grivel, E., & Najim, M. (2010). Rayleigh fading channel simulator based on inner-outer factorization. Signal Processing, 90(1), 24–33.

    Article  MATH  Google Scholar 

  24. Simon, D. (2006). Optimal state estimation Kalman, H1 and nonlinear approaches. Hoboken: Wiley.

    Book  Google Scholar 

  25. Wan, E., & Merwe, R. (2002). Kalman filtering and neural networks - Chapter 7 the unscented Kalman filter. Hoboken: Wiley.

    Google Scholar 

  26. Abdou, A., Turcu, F., Grivel, E., Diversi, R., & Ferré, G. (2015). Identification of an autoregressive process disturbed by a moving average noise based on inner- outer factorization, Signal, Image and Video processing (SIVP)-springer, Vol. 9, pp. 235–244.

  27. Challa, S., Bar-Shalom, Y., & Krishnamurthy, V. (1999). Nonlinear filtering using Gauss-Hermite quadrature and generalised Edgeworth series. Proceedings of the American Control Conference (ACC), 5, 3397–3401.

    Google Scholar 

  28. Arasaratnam, I., & Haykin, S. (2009). Cubature Kalman filters. IEEE Transactions on Automatic Control, 54(6), 1254–1269.

    Article  MathSciNet  MATH  Google Scholar 

  29. Fusco, T., Petrella, A., & Tanda, M. (2009). Data-aided symbol timing and CFO synchronization for filter bank multicarrier systems. IEEE Transactions on Wireless Communications, 8(5), 2705–2715.

    Article  Google Scholar 

  30. Poveda, H., Ferré, G. & Grivel, E. (2012). Frequency synchronization and channel equalization for an OFDM-IDMA uplink system. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP), pp. 3209–3212.

  31. Cadambe, V., & Jafar, S. (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Kalman filter (KF) has been used in a wide range of applications, from speech enhancement to time-varying autoregressive parameters tracking, from biomedical applications to mobile communications. More particularly, in this paper, Kalman filter can be used to estimate the channel (see "Appendix 1"). In the "Appendices 2 and 3", we recall how to address the estimation of the state vector by using the extended Kalman filter (EKF) or the second-order EKF (SOEKF), where Taylor series expansion is used. It should be noted that the state noise and the measurement noise are still assumed to be Gaussian. In "Appendix 4", the UKF was proposed as an alternative to the EKF to avoid the linearization step. Like the UKF, the Quadrature Kalman filter (QKF) and Cubature Kalman filter (CKF) are a sigma point Kalman filter (SPKF) (See "Appendix 5"). The main difference between QKF, CKF and UKF is the way to choose the sigma points. In "Appendices 6 and 7" deal with how to choose the sigma points. Indeed, in QKF the sigma points are chosen by using the Gauss-Hermite quadrature where CKF differs from QKF by the considered way of approximation.

Appendix 1: Kalman filter

- initialize the value of \(\hat{{\mathbf {x}}}(0\vert 0)\) and \({\mathbf {P}}(0\vert 0)\).

The prediction step

- update the state vector:

\(\hat{{\mathbf {x}}}(n\vert n-1)={\mathbf {F}}(n)\hat{{\mathbf {x}}}(n-1\vert n-1)\)

- update the error covariance matrix:

\({\mathbf {P}}(n\vert n-1)={\mathbf {F}}(n){\mathbf {P}}(n-1\vert n-1){\mathbf {F}}^H(n)+{\mathbf {G}}{\mathbf {Q}}{\mathbf {G}}^H\)

The filtering step

- update the Kalman gain:

\({\mathbf {K}}(n)= {\mathbf {P}}(n\vert n-1){\mathbf {H}}(n)^H \big ( {\mathbf {H}}(n){\mathbf {P}}(n\vert n-1){\mathbf {H}}(n)^H +{\mathbf {R}}\big )^{-1}\)

- update the state vector:

\(\hat{{\mathbf {x}}}(n\vert n)=\hat{{\mathbf {x}}}(n\vert n-1)+{\mathbf {K}}(n)\left( {\mathbf {y}}(n)-{\mathbf {H}}(n)\hat{{\mathbf {x}}}(n\vert n-1)\right)\)

- finally, update the error covariance matrix:

\({\mathbf {P}}(n\vert n)=\{{\mathbf {I}}_U-{\mathbf {K}}(n){\mathbf {H}}(n)\}{\mathbf {P}}(n|n-1)\)

Appendix 2: Extended Kalman filter

- initialize the value of \(\hat{{\mathbf {x}}}(0\vert 0)\) and \({\mathbf {P}}(0\vert 0)\).

- calculate the Jacobian matrix \(\nabla _{{\mathbf {x}}} {\mathbf {f}}_{n}\vert _{\hat{{\mathbf {x}}}(n-1 \vert n-1)}\).

- update the a priori state vector:

\(\hat{{\mathbf {x}}}(n\vert n-1)={\mathbf {f}}_{n}(\hat{{\mathbf {x}}}(n-1\vert n-1))\)

- update the a priori error covariance matrix:

\({\mathbf {P}}(n\vert n-1)= \nabla _{{\mathbf {x}}}{\mathbf {f}}_n|_{\mathbf {{\hat{x}}}(n-1|n-1)}{\mathbf {P}}(n-1|n-1) \nabla _{{\mathbf {x}}}{\mathbf {f}}_n^H|_{\mathbf {{\hat{x}}}(n-1|n-1)}+{\mathbf {G}}{\mathbf {Q}}{\mathbf {G}}^H\)

- calculate the Jacobian matrix \(\nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}\vert _{\hat{{\mathbf {x}}}(n \vert n-1)}\).

- update the Kalman gain \({\mathbf {K}}(n)\):

\({\mathbf {K}}(n)= {\mathbf {P}}(n\vert n-1)\nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}^H\vert _{\hat{{\mathbf {x}}}(n \vert n-1)} \big ( \nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}\vert _{\hat{{\mathbf {x}}}(n \vert n-1)}{\mathbf {P}}(n\vert n-1)\nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}^H\vert _{\hat{{\mathbf {x}}}(n \vert n-1)} +{\mathbf {R}}\big )^{-1}\)

- deduce the a posteriori state vector:

\(\hat{{\mathbf {x}}}(n\vert n)=\hat{{\mathbf {x}}}(n|n-1)+{\mathbf {K}}(n)\{{\mathbf {y}}(n)- {\mathbf {h}}_n(\mathbf {{\hat{x}}}(n|n-1))\}\)

- finally, update the error covariance error matrix:

\({\mathbf {P}}(n\vert n)=\{{\mathbf {I}}_U-{\mathbf {K}}(n)\nabla _{{\mathbf {x}}}{\mathbf {h}}_n|_{\mathbf {{\hat{x}}}(n|n-1)}(n)\}{\mathbf {P}}(n|n-1)\)

Appendix 3: Second-order extended Kalman filter

- calculate the Jacobian matrix \(\nabla _{{\mathbf {x}}} {\mathbf {f}}_{n}\vert _{\hat{{\mathbf {x}}}(n-1 \vert n-1)}\) and \(\overline{{\mathbf {f}}}^{mean}_{n-1}\) using:

\(\begin{aligned}{{\overline{{\text {f}}}}}^{ \tiny mean }_{n}&={\mathbb {E}}\{ \mathbf {{\overline{f}}}_{n} |{\mathbf {y}}(0),\ldots , {\mathbf {y}}(n-1) \}=\sum ^U_{u=1} {\varTheta }_u^{\text {f}}{{\overline{{\text {f}}}}}^{ \tiny mean }_{n,u}\end{aligned}\)

with \({\varTheta }_u^{\text {f}}\) is a \(U \times 1\) vector with zeros everywhere except for the uth element

which is equal to 1. see [24]

- update the a priori state vector:

\(\hat{{\mathbf {x}}}(n|n-1)= {\mathbf {f}}_{n}(\hat{{\mathbf {x}}}(n-1\vert n-1))+\frac{1}{2}\overline{{\mathbf {f}}}^{mean}_{n-1}\)

- update the a priori error covariance matrix:

\({\mathbf {P}}(n|n-1)= \nabla _{{\mathbf {x}}}{\mathbf {f}}_n|_{\mathbf {{\hat{x}}}(n-1|n-1)}{\mathbf {P}}(n-1|n-1) \nabla _{{\mathbf {x}}}{\mathbf {f}}_n^H|_{\mathbf {{\hat{x}}}(n-1|n-1)}+{\mathbf {G}}{\mathbf {Q}}{\mathbf {G}}^H\)

- calculate the Jacobian matrix \(\nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}\vert _{\hat{{\mathbf {x}}}(n \vert n-1)}\) and \(\mathbf {\overline{\overline{{h}}}}_{n}\) using (??).

- update the Kalman gain \({\mathbf {K}}(n)\) as follows:

\({\mathbf {K}}(n)= {\mathbf {P}}(n\vert n-1)\nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}^H\vert _{\hat{{\mathbf {x}}}(n \vert n-1)} \big ( \nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}\vert _{\hat{{\mathbf {x}}}(n \vert n-1)}{\mathbf {P}}(n\vert n-1)\nabla _{{\mathbf {x}}} {\mathbf {h}}_{n}^H\vert _{\hat{{\mathbf {x}}}(n \vert n-1)} +{\mathbf {R}}\big )^{-1}\)

- deduce the a posteriori state vector:

\(\hat{{\mathbf {x}}}(n|n)=\hat{{\mathbf {x}}}(n|n-1)+{\mathbf {K}}(n)\{{\mathbf {y}}(n)- {\mathbf {h}}_n(\mathbf {{\hat{x}}}(n|n-1)) - \frac{1}{2} \mathbf {\overline{\overline{{h}}}}_n\}\)

- finally, update the error covariance error matrix:

\({\mathbf {P}}(n\vert n)=\{{\mathbf {I}}_U-{\mathbf {K}}(n)\nabla _{{\mathbf {x}}}{\mathbf {h}}_n|_{\mathbf {{\hat{x}}}(n|n-1)}(n)\}{\mathbf {P}}(n|n-1)\)

Appendix 4: Unscented Kalman filter

- calculate the sigma points:

\({{\mathscr {X}}}(n-1|n-1)= \Big [ \hat{{\mathbf {x}}}(n-1 \vert n-1), \hat{{\mathbf {x}}}(n-1 \vert n-1)\pm \big (\sqrt{(N_d+\lambda ){\mathbf {P}}(n-1 \vert n-1)} \big ) \Big ]\)

- calculate the prediction of the system:

\({{\mathscr {X}}}(n-1|n-1)= {\mathbf {f}}_{n} ({{\mathscr {X}}}(n-1|n-1))\)

- update the a priori mean is:

\(\hat{{\mathbf {x}}}^-(n|n-1)=\sum _{{\mathfrak {m}}=0}^{2U } w_{\mathfrak {m}}^{(c0)}{{\mathscr {X}}}_{{\mathfrak {m}}}(n|n-1)\)

- update the a priori error covariance matrix:

\(\begin{aligned}{\mathbf {P}}(n|n-1)&=\sum _{{\mathfrak {m}}=0}^{2U} w_{\mathfrak {m}}^{(c1)}\left[ {{\mathscr {X}}}_{{\mathfrak {m}}}(n|n-1)-\hat{{{\mathbf {x}}}}^-(n|n-1)\right] ^\star +{\mathbf {G}}{\mathbf {Q}}{\mathbf {G}}^H\end{aligned}\)

- calculate \(\hat{{\mathbf {y}}}^-(n|n-1)\):

\(\hat{{\mathbf {y}}}^-(n|n-1)=\sum _{{m}=0}^{2U } w_{m}^{c0}{{\mathscr {Y}}}_{{m}}(n|n-1)\)

where

\(\begin{aligned}{{\mathscr {X}}}(n|n-1)={\mathbf {f}}_n\left( {{\mathscr {X}}}(n|n-1)\right) \end{aligned}\)

- update the Kalman gain:

\({\mathbf {K}}(n)= \lbrace {\mathbf {P}}^{xy}\rbrace \lbrace {\mathbf {P}}^{yy}\rbrace ^{-1}\)

where \({\mathbf {P}}^{yy}\)and \({\mathbf {P}}^{xy}\) are defined as:

\(\begin{aligned}{\mathbf {P}}^{{{\mathbf {y}}}{{\mathbf {y}}}}(n)&=\sum _{{m}=0}^{2U} w_{m}^{c1}\left[ {{\mathscr {Y}}}_{{m}}(n|n-1)-\hat{{\mathbf {y}}}^-(n|n-1)\right] ^\star + {\mathbf {R}}\end{aligned}\) and

\(\begin{aligned}{\mathbf {P}}^{{\mathbf {x}}{{\mathbf {y}}}}(n)=\sum _{{m}=0}^{2U} w_{\mathfrak {m}}^{c1}\left[ {{\mathscr {X}}}_{{m}}(n|n-1)-\hat{{\mathbf {x}}}^-(n)\right] \times \left[ {{\mathscr {X}}}_{{m}}(n|n-1)-\hat{{\mathbf {y}}}^-(n|n-1)\right] \end{aligned}\)

- update the state vector:

\(\hat{{\mathbf {x}}}(n|n)=\hat{{\mathbf {x}}}(n|n-1)+{\mathbf {K}}(n)\{{\mathbf {y}}(n)-\hat{{\mathbf {y}}}^-(n|n-1)\}\)

- update the error covariance matrix:

\({\mathbf {P}}(n|n)={\mathbf {P}}(n|n-1)-{\mathbf {K}}(n){\mathbf {P}}^{{{{\mathbf {y}}}}{{\mathbf {y}}}}(n){\mathbf {K}}^H(n)\)

Appendix 5: Quadrature Kalman filter and Cubature Kalman Filter

Prediction:

- compute the Cholesky factor of \({\mathbf {P}}(n-1|n-1)\):

\({\mathbf {P}}(n-1|n-1)={\mathbf {S}}(n-1|n-1){\mathbf {S}}(n-1|n-1)^H\)

- compute the sigma points and the weights according to "Appendix 6 (Gauss-Hermite

quadrature points for QKF) or according to "Appendix 7" (the cubature points for CKF).

- evaluate the sigma points:

\({{\mathscr {X}}}_l(n-1|n-1)=\hat{{{\mathbf {x}}}}(n-1|n-1)+{\mathbf {S}}(n-1|n-1){\xi } _l\)

- propagate the sigma points through the non-linear update function:

\({{\mathscr {X}}}_l^*(n|n-1)={\mathbf {f}}_{n} ({{\mathscr {X}}}_l(n-1|n-1))\)

- estimate the a priori state vector by combining the a posteriori sigma points:

\(\hat{{{\mathbf {x}}}}(n|n-1)= \sum _l w_l{{\mathscr {X}}}_l^*(n-1|n-1)\)

- estimate the a priori estimation error covariance matrix:

\({\mathbf {P}}(n|n-1)= \sum _l w_l{{\mathscr {X}}}_l^*(n-1|n-1){{\mathscr {X}}}_l^*(n-1|n-1)^H\)

\(-\hat{{{\mathbf {x}}}}(n|n-1)\hat{{{\mathbf {x}}}}(n|n-1)^H +{\mathbf {G}}{\mathbf {Q}}{\mathbf {G}}^H\)

Update

- compute the Cholesky factor of \({\mathbf {P}}(n|n-1)\):

\({\mathbf {P}}(n|n-1)={\mathbf {S}}(n|n-1){\mathbf {S}}(n|n-1)^H\)

- compute again the sigma points and the weights according to "Appendix 6" (Gauss-Hermite

quadrature points for QKF) or according to "Appendix 7" (the cubature points for CKF).

- evaluate the sigma points:

\({{\mathscr {X}}}_l(n|n-1)=\hat{{{\mathbf {x}}}}(n|n-1)+{\mathbf {S}}(n|n-1){\xi } _l\)

- propagate the sigma points through the non-linear observation function:

\({{\mathscr {Y}}}(n|n-1)={\mathbf {h}}_{n} ({{\mathscr {X}}}_l(n|n-1)\)

- calculate \(\hat{{\mathbf {y}}}^-(n|n-1)\):

\(\hat{{{\mathbf {y}}}}^-(n|n-1)= \sum _l w_l{{\mathscr {Y}}}(n|n-1)\)

- update the Kalman gain:

\({\mathbf {K}}(n)= \lbrace {\mathbf {P}}^{xy}\rbrace \lbrace {\mathbf {P}}^{yy}\rbrace ^{-1}\)

where

\({\mathbf {P}}^{xy}= \sum _l w_l{{\mathscr {X}}}_l(n|n-1){{\mathscr {Y}}}(n|n-1)^H-\hat{{{\mathbf {x}}}}(n|n-1)\hat{{{\mathbf {y}}}}^-(n|n-1)^H\)

and

\({\mathbf {P}}^{yy}= \sum _l w_l{{\mathscr {Y}}}(n|n-1){{\mathscr {Y}}}(n|n-1)^H-\hat{{{\mathbf {y}}}}^-(n|n-1)\hat{{{\mathbf {y}}}}^-(n|n-1)^H + {\mathbf {R}}\)

- update the state vector:

\(\hat{{\mathbf {x}}}(n|n)=\hat{{\mathbf {x}}}(n|n-1)+{\mathbf {K}}(n)\{{\mathbf {y}}(n)-\hat{{\mathbf {y}}}^-(n|n-1)\}\)

- update the error covariance matrix:

\({\mathbf {P}}(n|n)={\mathbf {P}}(n|n-1)-{\mathbf {K}}(n){\mathbf {P}}^{{{{\mathbf {y}}}}{{\mathbf {y}}}}(n){\mathbf {K}}^H(n)\)

Appendix 6: Calculation of Gauss-Hermite quadrature points and weights

- Set the number of hermite polynomial points m and thus \(U^m\) points where

U is the size of the state vector.

- generate a symmetric tridiagonal matrix with zero diagonal elements \({\mathbf {J}}\) such that:

\(J_{i,i+1}=\sqrt{\frac{i}{2}}\) where \(i=1, \cdots , m\)

- compute \(\left\{ \lambda _i\right\} _{i=1, \cdots , m}\), which are the eigenvalues of \({\mathbf {J}}\)

- set \(\xi _l=\sqrt{2}\lambda _i\).

- set \(w_i=(e_i)_1^2\) where \((e_i)_1\) is the first element of the \(i^{\text {th}}\) normalized eigenvector of \({\mathbf {J}}\).

- extend the one-dimensional quadrature point set of m points in one dimension to

a lattice of \(U^m\) cubature points in U dimensions by using the product rule:

\(\sum _{i_1, i_2, \cdots i_U} w_{i_1}w_{i_2}\cdots w_{i_U} f(x_1^{i_1}, x_2^{i_2}, \cdots x_U^{i_U})\)

- the weights for these Gauss-Hermite cubature points are calculated

by the product of the corresponding one-dimensional weights.

- by changing the variable \({\mathbf {x}}=\sqrt{2}\varvec{\varSigma }+ {\mu }\) we get Gauss-Hermite weighted

sum approximation for multidimensional Gaussian integral where \({\mu }\) is the mean

and \(\varvec{\varSigma }\) is the covariance of Gaussian \((\varvec{\varSigma }=\sqrt{\varvec{\varSigma }}\sqrt{\varvec{\varSigma ^H}})\).

- Then, let \(\int c({\mathbf {x}}) {\mathscr {N}} \left\{ {\mathbf {x}};{\mu };\varvec{\varSigma } \right\} d{\mathbf {x}}\approx \sum _{i_1, i_2, \cdots i_U} w_{i_1}w_{i_2}\cdots w_{i_U} f(\sqrt{\varvec{\varSigma }} {\xi } _{i_1, i_2, \cdots i_U}+{\mu })\).

- \(w_{{i_1, i_2, \cdots i_U}}=\frac{1}{\pi ^{m/2}}w_{i_1}w_{i_2}\cdots w_{i_U}\)

- \({\xi } _{i_1, i_2, \cdots i_U}=\sqrt{2} (x_1^{i_1}, x_2^{i_2}, \cdots x_U^{i_U})\).

Appendix 7: Calculation of cubature points and weights

- Set the number of cubature points, \(m=2U\) where U is the size of the state vector.

-set \({\xi }_i=\sqrt{\frac{m}{2}}\left[ {\mathbf {1}}\right] _i\) where \([{\mathbf {1}}]\) is \(i^{\text {th}}\) column of the matrix

\([{\mathbf {1}}]=\left\{ \begin{array}{cccccc}1&{} 0&{} \cdots &{} -1 &{} 0&{} \cdots \\ 0&{} 1 &{} \cdots &{} 0&{} -1&{} \cdots \\ \vdots &{} 0 &{} \cdots &{} \vdots &{} 0&{} \cdots \\ 0 &{} 0 &{} \cdots &{} 0 &{} 0&{} \cdots \end{array} \right\}\)

- set the weight to \(w_i=\frac{1}{m}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, A., Abdo, A. & Jamoos, A. Overlay Cognitive Radio Based on OFDM with Channel Estimation Issues. Wireless Pers Commun 108, 1079–1096 (2019). https://doi.org/10.1007/s11277-019-06455-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06455-2

Keywords

Navigation