Skip to main content
Log in

Single-Feed Dual-Polarized High Gain Microstrip Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, a novel single-feed stacked microstrip antenna is proposed for high gain and dual polarization application. The designed antenna is useful at two purposes. In one hand, its lower operating frequency demonstrates high gain and on the other hand, the upper operating frequency shows circular polarization. The proposed design consists of two pairs of small parallel slots on the radiating surface as well as in the ground plane with a view to achieving significant amount of gain (approximately 8.3 dB) at its lower operating frequency (~ 6 GHz). An interesting aspect of this work is its polarization diversity. The designed antenna is capable of showing circular polarization at its upper operating frequency (~ 6.8 GHz). At this frequency, the axial ratio of the antenna has been kept below 3 dB for circular polarization applications. This circular polarization has been introduced by truncating the corners of radiating patch at different shapes. High gain and dual polarization play a major role on different antenna performance parameters. This antenna meets these two applications simultaneously. A prototype has been fabricated and characterized in order to validate the results. An outstanding agreement between experimental results and simulated results is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar, S., Kanaujia, B. K., Sharma, A., Khandelwal, M. K., & Gautam, A. K. (2014). Single-feed cross-slot loaded compact circularly polarized microstrip antenna for indoor WLAN applications. Microwave and Optical Technology Letters, 56(6), 1313–1317.

    Article  Google Scholar 

  2. Kumar, C., & Guha, D. (2012). linearly polarized elliptical microstrip antenna with improved polarization purity and bandwidth characteristics. Microwave and Optical Technology Letters, 54(10), 2309–2314.

    Article  Google Scholar 

  3. Kumar, S., Kanaujia, B. K., Khandelwal, M. K., & Gautam, A. K. (2015). Single-feed circularly polarized stacked patch antenna with small-frequency ratio for dual-band wireless applications. International Journal of Microwave and Wireless Technologies, 8(8), 1207–1213.

    Article  Google Scholar 

  4. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2015). Triple band circularly polarized compact microstrip antenna with defected ground structure for wireless applications. International Journal of Microwave and Wireless Technologies, 8(6), 943–953.

    Article  Google Scholar 

  5. Gao, S., & Sambell, A. (2005). Simple broadband dual-polarized printed antenna. Microwave and Optical Technology Letters, 46(2), 144–148.

    Article  Google Scholar 

  6. Liang, X.-L., Zhong, S.-S., & Wang, W. (2005). Design of a dual-polarized microstrip patch antenna with excellent polarization purity. Microwave and Optical Technology Letters, 44(4), 329–331.

    Article  Google Scholar 

  7. Row, J.-S., Yeh, S.-H., & Wong, K.-L. (2000). Compact dual-polarized microstrip antennas. Microwave and Optical Technology Letters, 27(4), 284–287.

    Article  Google Scholar 

  8. Yang, T. Y., Hong, W., & Zhang, Y. (2015). Wideband high-gain low-profile dual-polarized stacked patch antenna array with parasitic elements. Microwave and Optical Technology Letters, 57(9), 2012–2016.

    Article  Google Scholar 

  9. Gao, S., & Sambell, A. (2005). Dual-polarized broad-band microstrip antennas fed by proximity coupling. IEEE Transactions on Antennas and Propagation, 53(1), 526–530.

    Article  Google Scholar 

  10. Sim, C.-Y.-D., Chang, C.-C., & Row, J.-S. (2009). Dual-feed dual-polarized patch antenna with low cross polarization and high isolation. IEEE Transactions on Antennas and Propagation, 57(10), 3321–3324.

    Article  Google Scholar 

  11. Shad, Saeideh, Rahimian, Zahra, & Bemani, Mohammad. (2016). Design of a wideband dual-polarized microstrip patch antenna with novel structure for WLAN application. Microwave and Optical Technology Letters, 58(7), 1599–1602.

    Article  Google Scholar 

  12. Shynu, S. V., Raj, R. K., Chandran, A. R., & Anandan, C. K. (2004). Single-feed dual-frequency dual polarized microstrip antenna with hexagonal slot. IEEE Antennas and Propagation Society Symposium, 4, 4380–4383.

    Article  Google Scholar 

  13. Lin, S., Qi, S.-S., Wu, W., Fang, D.-G. (2013). Single-fed dual-band dual-polarized U-slot patch antenna. In Microwave workshop series on RF and wireless technology biomedical and healthcare application (IMWS-BIO), 2013 IEEE MTT-S International (pp. 1–3).

  14. Prajapati, P. R., Patnaik, A., & Kartikeyan, M. V. (2014) Design of single feed dual band dual polarized microstrip antenna with defected ground structure for aeronautical and radio navigation applications. In General assembly and scientific symposium (URSI GASS), 2014 XXXIth URSI (pp. 1–4).

  15. Kundukulam, S. O., Paulson, M., Aanandan, C. K., Mohanan, P., & Vasudevan, K. (2000). Dual-band dual-polarized compact microstrip antenna. Microwave and Optical Technology Letters, 25(5), 328–331.

    Article  Google Scholar 

  16. Paulson, M., Kundukulam, S. O., Aanandan, C. K., & Mohanan, P. (2001). A new compact dual-band dual-polarized microstrip antenna. Microwave and Optical Technology Letters, 29(5), 328–331.

    Article  Google Scholar 

  17. Afshinmanesh, F., Marandi, A., & Shahabadi, M. (2008). Design of a single-feed dual-band dual-polarized printed microstrip antenna using a boolean particle swarm optimization. IEEE Transactions on Antennas and Propagation, 56(7), 1845–1852.

    Article  Google Scholar 

  18. Yuan, H. Y., Zhang, J. Q., Qu, S. B., Zhou, H., Wang, J. F., Ma, H., et al. (2012). Dual-band dual-polarized microstrip antenna for compass navigation satellite system. Progress in Electromagnetics Research C, 30, 213–223.

    Article  Google Scholar 

  19. Uddin, N., Chen, Z. N., & Qing, X. (2012). Compact circularly polarized asymmetric-slotted microstrip patch antennas. Microwave and Optical Technology Letters, 54(8), 1920–1927.

    Article  Google Scholar 

  20. Kumar, S., Kanaujia, B. K., Khandelwal, M. K., & Gautam, A. K. (2014). Stacked dual-band circularly polarized microstrip antenna with small frequency ratio. Microwave and Optical Technology Letters, 56(8), 1933–1937.

    Article  Google Scholar 

  21. Chakraborty, S., & Chattopadhyay, S. (2016). Substrate fields modulation with defected ground structure: a key to realize high gain, wideband microstrip antenna with improved polarization purity in principal and diagonal planes. Int J RF and Microwave CAE, 26, 174–181.

    Article  Google Scholar 

  22. Liu, Y., Li, X., Yang, L., & Liu, Y. (2017). A dual-polarized dual-band antenna with omni-directional radiation patterns. IEEE Transactions on Antennas and Propagation, 65(8), 4259–4262.

    Article  Google Scholar 

  23. Chen, K., Yuan, J., & Luo, X. (2017). Compact dual-band dual circularly polarized annular-ring patch antenna for BeiDou navigation satellite system application. IET Microwaves, Antennas and Propagation, 11(8), 1079–1085.

    Article  Google Scholar 

  24. Roy, C., Khan, T., & Kanaujia, B. K. (2017). Performance parameters prediction of slotted microstrip antennas with modified ground plane using support vector machine. International Journal of Microwave and Wireless Technologies, 9(5), 1169–1177.

    Article  Google Scholar 

  25. Alibakhshikenari, M., Virdee, B. S., & Limiti, E. (2018). Triple-band planar dipole antenna for omnidirectional radiation. Microwave and Optical Technology Letters, 60, 1048–1051.

    Article  Google Scholar 

  26. Alibakhshikenari, M., Virdee, B. S., Ali, A., & Limiti, E. (2018). A novel monofilar-Archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar systems. Microwave and Optical Technology Letters, 60, 2055–2060.

    Article  Google Scholar 

  27. Alibakhshikenari, M., Virdee, B. S., See, C. H., Abd-Alhameed, R., Ali, A., Falcone, F., et al. (2018). Wideband printed monopole antenna for application in wireless communication systems. IET Microwaves, Antennas and Propagation, 12(7), 1222–1230.

    Article  Google Scholar 

  28. Alibakhshikenari, M., Limiti, E., Naser-Moghadasi, M., Virdee, B. S., & Sadeghzadeh, R. A. (2017). A new wideband planar antenna with band-notch functionality at GPS, Bluetooth and WiFi bands for integration in portable wireless systems. International Journal of Electronics and Communications, 72, 79–85.

    Article  Google Scholar 

  29. Alibakhshikenari, M., Virdee, B. S., Ali, A., & Limiti, E. (2018). “Miniaturized planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems. IET Microwaves, Antennas and Propagation, 12(7), 1080–1086.

    Article  Google Scholar 

  30. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R. A., Virdee, B. S., & Limiti, E. (2017). New CRLH-based planar slotted antennas with helical inductors for wireless communication systems, RF-circuits and microwave devices at UHF-SHF bands. Wireless Personal Communications, 92(3), 1029–1038.

    Article  Google Scholar 

  31. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R. A., Virdee, B. S., & Limiti, E. (2016). Bandwidth extension of planar antennas using embedded slits for reliable multiband RF communications. International Journal of Electronics and Communications, 70(7), 910–919.

    Article  Google Scholar 

  32. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R. A., & Virdee, B. S. (2016). Hexa-band planar antenna with asymmetric fork-shaped radiators for multiband and broadband communication applications. IET Microwaves, Antennas and Propagation, 10(5), 471–478.

    Article  Google Scholar 

  33. Ansoft HFSS 14.0, Ansoft Corporation, Pittsburgh, PA.

  34. Baudha, S., & Kumar, V. D. (2015). Corner truncated broadband patch antenna with circular slots. Microwave and Optical Technology Letters, 57(4), 845–849.

    Article  Google Scholar 

  35. Gautam, A. K., & Kanaujia, B. K. (2013). A novel dual-band asymmetric slit with defected ground structure microstrip antenna for circular polarization operation. Microwave and Optical Technology Letters, 55(6), 1198–1201.

    Article  Google Scholar 

  36. Huang, J. (1983). The finite ground plane effect on the microstrip antenna radiation patterns. IEEE Transactions on Antennas and Propagation, 31(4), 649–653.

    Article  Google Scholar 

  37. Lier, E., & Jakobsen, K. R. (1983). Rectangular microstrip patch antennas with infinite and finite ground plane dimensions. IEEE Transactions on Antennas and Propagation, 31(6), 978–984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, C., Khan, T. Single-Feed Dual-Polarized High Gain Microstrip Antenna. Wireless Pers Commun 108, 1417–1430 (2019). https://doi.org/10.1007/s11277-019-06476-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06476-x

Keywords

Navigation