Skip to main content

Advertisement

Log in

Equilibrium Transmission Bi-level Energy Efficient Node Selection Approach for Internet of Things

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Internet of things concept is based on data from sensor devices. The conservation of sensor data in the cloud has become a well-known challenge with respect to the sensor-cloud network. There is an enormous quantity of sensed data, including missed and unimportant data due to unavailability of the node, low link quality, node deficiency or latency in path communication. In order to address this issue, it is necessary to develop an accurate sensor selection approach, precisely for the purpose of reducing the quantity of unimportant data (missed and noisy data). In this paper, we formulate an innovative and efficient bi-level node energy assessment algorithm, named BNSA, which uses a belief propagation protocol for optimal energy-efficient sensor selection. On the first level, the equilibrium transmission energy function is applied to all nodes to evaluate the transmission rate and link quality, together with the residual energy of the node, to predict the energy consumption, providing an accurate prediction of the energy level of the nodes. On the second level, optimal nodes are selected based on the prediction of the energy level. Belief propagation draws inferences for revealing missed sensor data. This approach improves the lifespan of the network and reduces the energy utilization rate by more than 32.3% with a delay rate of 77%. This is reflected in an enhancement of the quality of service with 85% of the energy consumption over the network, compared with existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787. https://doi.org/10.1016/j.comnet.2010.05.010.

    Article  MATH  Google Scholar 

  2. Gaitan, N. G., Gaitan, V. G., & Ungurean, I. (2015). A survey on the internet of things software arhitecture. International Journal of Advanced Computer Science and Applications (IJACSA), 6(12), 140. https://doi.org/10.14569/IJACSA.2015.061219.

    Google Scholar 

  3. Lindsey, S., Raghavendra, C., & Sivalingam, K. (2001). Data gathering in sensor networks using the energy delay metric. In International Parallel and Distributed Processing Symposium (Vol. 3, pp. 30188b).

  4. Sanjeevi, P., & Viswanathan, P. (2016). Employing smart homes IoT techniques for dynamic provision of cloud benefactors. International Journal of Critical Computer-Based Systems,. https://doi.org/10.1504/IJCCBS.2017.088361.

    Google Scholar 

  5. Meyer, F., Braca, P., Willett, P., & Hlawatsch, F. (2017). A scalable algorithm for tracking an unknown number of targets using multiple sensors. IEEE Transactions on Signal Processing, 65(13), 3478. https://doi.org/10.1109/TSP.2017.2688966.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lin, C. C., Deng, D. J., & Lu, L. Y. (2017). Many-objective sensor selection in iot systems. IEEE Wireless Communications, 24(3), 40. https://doi.org/10.1109/MWC.2017.1600409.

    Article  Google Scholar 

  7. Zhu, Q., Wang, R., Chen, Q., Liu, Y., & Qin, W. (2010). Iot gateway: Bridgingwireless sensor networks into internet of things. In 2010 IEEE/IFIP international conference on embedded and ubiquitous computing (pp. 347–352). https://doi.org/10.1109/EUC.2010.58.

  8. Mekala, M. S., & Viswanathan, P. (2017). A novel technology for smart agriculture based on IoT with cloud computing. In 2017 International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 7582). https://doi.org/10.1109/I-SMAC.2017.8058280.

  9. Abbas, Z., & Yoon, W. (2015). A survey on energy conserving mechanisms for the internet of things: Wireless networking aspects. Sensors (Switzerland), 15(10), 24818. https://doi.org/10.3390/s151024818.

    Article  Google Scholar 

  10. Hao, X., Jin, P., & Yue, L. (2016). Efficient storage of multi-sensor object-tracking data. IEEE Transactions on Parallel and Distributed Systems, 27(10), 2881. https://doi.org/10.1109/TPDS.2015.2511735.

    Article  Google Scholar 

  11. Mekala, M. S., & Viswanathan, P. (2017). A survey: Smart agriculture IoT with cloud computing. In 2017 international conference on microelectronic devices, circuits and systems (ICMDCS) (pp. 1–7). https://doi.org/10.1109/ICMDCS.2017.8211551.

  12. Chen, Y., Chuah, C. N., & Zhao, Q. (2008). Network configuration for optimal utilization efficiency of wireless sensor networks. Ad Hoc Networks, 6(1), 92. https://doi.org/10.1016/j.adhoc.2006.09.001.

    Article  Google Scholar 

  13. Tahir, M., & Farrell, R. (2013). A cross-layer framework for optimal delay-margin, network lifetime and utility tradeoff in wireless visual sensor networks. Ad Hoc Networks, 11(2), 701. https://doi.org/10.1016/j.adhoc.2011.09.011. (Special issue on cross-layer design in ad hoc and sensor networks).

    Article  Google Scholar 

  14. Liu, X., Liu, A., & Huang, C. (2017). Adaptive information dissemination control to provide diffdelay for the internet of things. Sensors (Switzerland), 17(1), 138. https://doi.org/10.3390/s17010138.

    Article  Google Scholar 

  15. Liu, A., Liu, X., Wei, T., Yang, L. T., Rho, S. C., & Paul, A. (2017). Distributed multi-representative re-fusion approach for heterogeneous sensing data collection. ACM Transactions on Embedded Computing Systems, 16(3), 1. https://doi.org/10.1145/2974021.

    Google Scholar 

  16. Sun, M., Shi, Z., Chen, S., Zhou, Z., & Duan, Y. (2017). Energy-efficient composition of congurable internet of things services. IEEE Access, 5, 25609. https://doi.org/10.1109/ACCESS.2017.2768544.

    Article  Google Scholar 

  17. Usman, M., Kliazovich, D., Granelli, F., Bouvry, P., & Castoldi, P. (2016). A transport layer approach to improve energy efficiency. In 2016 IEEE international conference on communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2016.7510675.

  18. Liu, X., Zhao, S., Liu, A., Xiong, N., & Vasilakos, A. V. (2017). Knowledge-aware proactive nodes selection approach for energy management in Internet of Things. Future Generation Computer Systems,. https://doi.org/10.1016/j.future.2017.07.022.

    Google Scholar 

  19. Kim, B. G., Lee, W. Y., Heo, S. Y., & Lee, W. J. (2011). An energy efficient on-demand routing scheme based on link quality for wireless sensor networks (p. 277283). Berlin: Springer. https://doi.org/10.1007/978-3-642-24267-0-33.

    Google Scholar 

  20. Kesavan, G., Sanjeevi, P., & Viswanathan, P. (2016). A 24 hour IoT framework for monitoring and managing home automation. In 2016 international conference on inventive computation technologies (ICICT) (Vol. 1, pp. 1). https://doi.org/10.1109/INVENTIVE.2016.7823205.

  21. Balasubramani, S. & Shankar, (2017). Review on MAC layer delay computation methods in wireless networks. In 2017 International conference on circuit, power and computing technologies (ICCPCT) (pp. 1–7). https://doi.org/10.1109/ICCPCT.2017.8074392.

  22. Duan, Y., Li, W., Fu, X., Luo, Y., & Yang, L. (2018). A methodology for reliability of WSN based on software defined network in adaptive industrial environment. IEEE/CAA Journal of Automatica Sinica, 5(1), 74. https://doi.org/10.1109/JAS.2017.7510751.

    Article  Google Scholar 

  23. Jang, J., Jung, I. Y., & Park, J. H. (2017). An effective handling of secure data stream in IoT. Applied Soft Computing Journal,. https://doi.org/10.1016/j.asoc.2017.05.020.

    Google Scholar 

  24. Delicato, F., Protti, F., Pirmez, L., & de Rezende, J. F. (2006). An efficient heuristic for selecting active nodes in wireless sensor networks. Computer Networks, 50(18), 3701. https://doi.org/10.1016/j.comnet.2006.04.005.

    Article  MATH  Google Scholar 

  25. Vishnumurthy, V., & Francis, P. (2006). On overlay construction and random node selection in heterogeneous unstructured P2P networks. In International Conference on . . .. http://ubinet.engr.uconn.edu/presentations/overlay/infocom06-swaplinks.pdf.

  26. Rossi, F., Beek, P. V., & Walsh, T. (2006). Handbook of constraint programming series, Foundations of artificial intelligence (1 edn., pp. 1–978). Elsevier Science.

  27. Zhang, B., Zhang, C., Mu, J., Wang, W., & Xie, J. (2017). An adaptive relay node selection algorithm based on opportunity. Eurasip Journal on Wireless Communications and Networking,. https://doi.org/10.1186/s13638-017-0880-9.

    Google Scholar 

  28. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco: Morgan Kaufmann Publishers Inc.

    MATH  Google Scholar 

  29. Kong, L., Xia, M., Liu, X. Y., Chen, G., Gu, Y., Wu, M. Y., et al. (2014). Data loss and reconstruction in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(11), 2818. https://doi.org/10.1109/TPDS.2013.269.

    Article  Google Scholar 

  30. Al-Turjman, F. (2017). Price-based data delivery framework for dynamic and pervasive IoT. Pervasive and Mobile Computing, 42, 299. https://doi.org/10.1016/j.pmcj.2017.05.001.

    Article  Google Scholar 

  31. Kong, L., Xia, M., Liu, X. Y., Chen, G., Gu, Y., Wu, M. Y., et al. (2014). Data loss and reconstruction in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems,. https://doi.org/10.1109/TPDS.2013.26.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the computing center and information technology professors of VIT University for their sincere cooperation in providing facilities and knowledge to enhance the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Viswanathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Theorem T.1

Deploying additional nodes if \(d(a,b) \ge R\,\,and\,\left| A \right| \le \left| \varDelta \right| (\frac{m}{\delta } + 1)\)

Proof

The distance between all nodes are evaluated as

$$\begin{aligned} \sum \limits _{a,b \in S}^n d(a,b)= & {} \sqrt{\sum \limits _{i = 1}^3 {x_i^{{a_1}} -x_i^{{b_1}}}} + \sqrt{\sum \limits _{i = 1}^3 {x_i^{{a_2}} - x_i^{{b_2}}}} \\&+ \sqrt{\sum \limits _{i = 1}^3 {x_i^{{a_3}} - x_i^{{b_3}}}} + \cdots + \sqrt{\sum \limits _{i = 1}^3 {x_i^{{a_n}} - x_i^{{b_n}}}}\\= & {} \sqrt{\varDelta _{a,b}^1} + \sqrt{\varDelta _{a,b}^2} + \sqrt{\varDelta _{a,b}^3} + \cdots + \sqrt{\varDelta _{a,b}^n}\\= & {} \varDelta _{a,b}^n \le {R_{The}} \end{aligned}$$

Let \({\varTheta _l}\) be the set of data points of \(\{{\rho _i}\}_{i=1}^m\), which are still not inserted after step l, with \({\varTheta _0}= \{ {\rho _i}\} _{i = 0}^m.\)

The highest number of uncovered data points over \({\varTheta _l}\) in step \(l + 1\). Hence, the size of this sub-area must cover at least \(^{\varTheta _l}\big / \delta\) information/data point in \({\varTheta _l}\), where \(\left| {{\varTheta _l}} \right|\) denotes the amount of data points in \({\varTheta _l}\). If this spacious sub-area covers fewer points, it is difficult to cover \({\varTheta _l}\) with \(\delta\) data points, which repudiates the presence of \(\delta\).

Such that, we have \(\left| {{\varTheta _{l + 1}}} \right| \le \left| {{\varTheta _l}} \right| - ^{|\varTheta _l|} \big / \delta\) and since

$$\begin{aligned}&\left| {{\varTheta _l}} \right| \le \left| {{\varTheta _{l - 1}}} \right| - {{\left| {{\varTheta _{l - 1}}} \right| }\big / \delta } =\left| {{\varTheta _{l - 1}}} \right| \left( 1 - \frac{1}{\delta }\right) \nonumber \\&\quad \le \left| {{\varTheta _{l - 2}}} \right| {\left( 1 - \frac{1}{\delta }\right) ^2}\nonumber \\&\quad \cdots \nonumber \\&\quad \left| {{\varTheta _0}} \right| {\left( 1 - \frac{1}{\delta }\right) ^l}\nonumber \\&\quad = m{\left( 1 - \frac{1}{\delta }\right) ^l} \end{aligned}$$
(T.1)

When \(\left| {{\varTheta _l}} \right| < \delta = \left| \varDelta \right|\), we resolve for l as follows

$$\begin{aligned} m{\left( {1 - \frac{1}{\varDelta }} \right) ^l} = \delta \end{aligned}$$
(T.2)

Since, \({(1 - x)^{\frac{1}{x}}} \le \frac{1}{\delta } \forall \,{\textit{for}}\,{\textit{all}}\,\,x,\,{\textit{we}}\,\,{\textit{have}}\)

$$\begin{aligned} l \le \delta \left( {\frac{m}{\delta }} \right) \end{aligned}$$
(T.3)

Thereafter, remaining only \(\delta\) information points need to process. Because each succeeding level excludes at least one data point, so \(\left| A \right| \le \left| \varDelta \right| \left( {\frac{m}{\delta } + 1} \right)\), make an accurate decision making results with QoS of service, better communication without loss of data even at abnormal conditions. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekala, M.S., Viswanathan, P. Equilibrium Transmission Bi-level Energy Efficient Node Selection Approach for Internet of Things. Wireless Pers Commun 108, 1635–1663 (2019). https://doi.org/10.1007/s11277-019-06488-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06488-7

Keywords