Skip to main content

Advertisement

Log in

Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Precision agriculture is a suitable solution to these challenges such as shortage of food, deterioration of soil properties and water scarcity. The developments of modern information technologies and wireless communication technologies are the foundations for the realization of precision agriculture. This paper attempts to find suitable, feasible and practical wireless communication technologies for precision agriculture by analyzing the agricultural application scenarios and experimental tests. Three kinds of Wireless Sensor Networks (WSN) architecture, which is based on narrowband internet of things (NB-IoT), Long Range (LoRa) and ZigBee wireless communication technologies respectively, are presented for precision agriculture applications. The feasibility of three WSN architectures is verified by corresponding tests. By measuring the normal communication time, the power consumption of three wireless communication technologies is compared. Field tests and comprehensive analysis show that ZigBee is a better choice for monitoring facility agriculture, while LoRa and NB-IoT were identified as two suitable wireless communication technologies for field agriculture scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121–131.

    Article  Google Scholar 

  2. Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66–84.

    Article  Google Scholar 

  3. Ferrández-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors, 18, 1731.

    Article  Google Scholar 

  4. Martínez, R., Pastor, J. Á., Álvarez, B., & Iborra, A. (1979). A testbed to evaluate the FIWARE-based IoT platform in the domain of precision agriculture. Sensors, 2016, 16.

    Google Scholar 

  5. Pratim, R. P. (2017). Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9, 395–420.

    Article  Google Scholar 

  6. Ferrandez-Pastor, F. J., Garcia-Chamizo, J. M., Nieto-Hidalgo, M., Mora-Pascual, J., & Mora-Martinez, J. (2016). Developing ubiquitous sensor network platform using internet of things: Application in precision agriculture. Sensors, 16, 1141.

    Article  Google Scholar 

  7. Jawad, H. M., Nordin, R., & Gharghan, S. K. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17, 1781. https://doi.org/10.3390/s17081781.

    Article  Google Scholar 

  8. Sabri, N., Aljunid, S. A., Ahmad, R., Malek, M., Yahya, A., Kamaruddin, R., et al. (2012). Smart prolong fuzzy wireless sensor-actor network for agricultural application. Journal of Information Science and Engineering, 28(2), 295–316.

    Google Scholar 

  9. Ilie-Ablachim, D., Pătru, G. C., Florea, I. M., & Rosner, D. (2016). Monitoring device for culture substrate growth parameters for precision agriculture. In Proceedings of the 15th RoEduNet conference: Networking in education and research, Bucharest, Romania, 7–9 September 2016 (pp. 1–7).

  10. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials, 19(2), 855–873. https://doi.org/10.1109/COMST.2017.2652320.

    Article  Google Scholar 

  11. Chen, J., Hu, K., Wang, Q., Sun, Y., & Shi, Z. G. (2017). Narrow-band internet of things: Implementations and applications. IEEE Internet of Things Journal, 4(6), 2309–2314.

    Article  Google Scholar 

  12. Bluetooth-technology, topology-options. Available online: https://www.bluetooth.com/bluetooth-technology/topology-options. Accessed 21 Oct 2018.

  13. Wi-Fi Alliance. Available online: https://www.wi-fi.org/. Accessed 21 Oct 2018.

  14. IEEE 802.15.4v-2017. Available online: https://standards.ieee.org/standard/802_15_4v-2017.html. Accessed 21 Oct 2018.

  15. Alliance, Lo Ra. (2015). White Paper: A Technical Overview of Lora and Lorawan. San Ramon: The LoRa Alliance.

    Google Scholar 

  16. NB-IoT wide range of opportunities. Available online: http://www.huawei.com/minisite/4-5g/img/NB-IOT.pdf. Accessed 21 Oct 2018.

  17. Sigfox-the global communications service provider for IoT. Available online: http://www.sigfox.com. Accessed 21 Oct 2018.

  18. Li, L., & Liu, G. (2006). Design of greenhouse environment monitoring and controlling system based on bluetooth technology. Transactions of the Chinese Society for Agricultural Machinery, 10, 97–100.

    Google Scholar 

  19. Hong, G. Z., & Hsieh, C. L. (2016). Application of integrated control strategy and bluetooth for irrigating romaine lettuce in greenhouse. IFAC Papers On-Line, 49, 381–386.

    Article  Google Scholar 

  20. Kim, Y., Evans, R. G., & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57, 1379–1387.

    Article  Google Scholar 

  21. Bartlett, A. C., Andales, A. A., Arabi, M., & Bauder, T. A. (2015). A smartphone APP to extend use of a cloud-based irrigation scheduling tool. Computers and Electronics in Agriculture, 111, 127–130.

    Article  Google Scholar 

  22. Vellidis, G., Liakos, V., Andreis, J. H., Perry, C. D., Porter, W. M., Barnes, E. M., et al. (2016). Development and assessment of a smartphone application for irrigation scheduling in cotton. Computers and Electronics in Agriculture, 127, 249–259.

    Article  Google Scholar 

  23. Yeng, C., Yuling, S., & Zhongyi, W. (2016). Connectivity of wireless sensor networks for plant growth in greenhouse. International Journal of Agricultural and Biological Engineering, 9, 89–98.

    Google Scholar 

  24. Cambra, C., Sendra, S., Jimenez, J. M., Lloret, J. (2017). Wireless network of sensors of low energy consumption in hydroponic agriculture. In Proceedings of the WSN & WLAN conference on JITEL, Valencia, Spain, 27–29 May 2017.

  25. Alvino, A., & Marino, S. (2017). remote sensing for irrigation of horticultural crops. Horticulturae, 3, 40.

    Article  Google Scholar 

  26. Voulodimos, Athanasios S., Patrikakis, Charalampos Z., Sideridis, Alexander B., Ntafis, Vasileios A., & Xylouri, Eftychia M. (2010). A complete farm management system based on animal identification using RFID technology. Computers and Electronics in Agriculture, 70, 380–388.

    Article  Google Scholar 

  27. Ruiz, G. L., & Lunadei, L. (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79, 42–50.

    Article  Google Scholar 

  28. Gabriel, V., Juan, F. D., Daniel, H. D. I., & Javier, B. (2017). Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors, 17, 1775. https://doi.org/10.3390/s17081775.

    Article  Google Scholar 

  29. Zhurong, C., Chao, H., Jingsheng, L., Shoubin, L. (2008). Protocol architecture for wireless body area network based on nRF24L01. In Proceedings of the 2008 IEEE international conference on automation and logistics (ICAL 2008), Qingdao, China, 1–3 September 2008 (pp. 3050–3054).

  30. Mendez, G. R., Yunus, M. A. M, & Mukhopadhyay, S. C. (2012). A WiFi based smart wireless sensor network for an agricultural environment. In IEEE international instrumentation and measurement technology conference proceedings, Graz, Austria, 2012 (pp. 2640–2645).

  31. Mohapatra, A. G., & Lenka, S. K. (2016). Neural network pattern classification and weather dependent fuzzy logic model for irrigation control in WSN based precision agriculture. Procedia Computer Science, 78, 499–506.

    Article  Google Scholar 

  32. Nagarajan, G., & Minu, R. I. (2018). Wireless soil monitoring sensor for sprinkler irrigation automation system. Wireless Personal Communications, 98, 1835–1851. https://doi.org/10.1007/s11277-017-4948-y.

    Article  Google Scholar 

  33. Jinbo, C., Yu, Z., & Lam, A. (2018). Research on monitoring platform of agricultural product circulation efficiency supported by cloud computing. Wireless Personal Communications. https://doi.org/10.1007/s11277-018-5392-3.

    Google Scholar 

  34. Guo, J., Ma, X. M., Guo, W., & Sun, Z. F. (2013). Design of farmland environment remote monitoring system based on ZigBee network. Journal of Agricultural Mechanization Research, 11, 65–70.

    Google Scholar 

  35. Zhang, Q., Yang, X. L., Zhou, Y. M., Wang, L. R., & Guo, X. S. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-Science A, 8, 1584–1587.

    Article  Google Scholar 

  36. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.

    Article  Google Scholar 

  37. Huircán, J. I., Muñoz, C., Young, H., Von Dossow, L., Bustos, J., Vivallo, G., et al. (2010). Zigbee-based wireless sensor network localization for cattle monitoring in grazing fields. Computers and Electronics in Agriculture, 74(2), 258–264.

    Article  Google Scholar 

  38. Nadimi, E. S., Jorgensen, R. N., Blanes-Vidal, V., & Christensen, S. (2012). Monitoring and classifying animal behavior using zigbee-based mobile ad hoc wireless sensor networks and artificial neural networks. Computers and Electronics in Agriculture, 82, 44–54.

    Article  Google Scholar 

  39. Zhang, J., Hu, J., Huang, L., Zhang, Z., & Ma, Y. M. (2016). A portable farmland information collection system with multiple sensors. Sensors, 16, 1762. https://doi.org/10.3390/s16101762.

    Article  Google Scholar 

  40. Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63, 166–176.

    Article  Google Scholar 

  41. Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74.

    Article  Google Scholar 

  42. Kontogiannis, S., Kokkonis, G., Ellinidou, S., & Valsamidis, S. (2017). Proposed fuzzy-NN algorithm with LoRa communication protocol for clustered irrigation systems. Future Internet, 9, 78. https://doi.org/10.3390/fi9040078.

    Article  Google Scholar 

  43. Gil-Lebrero, S., Quiles-Latorre, F. J., Ortiz-López, M., Sánchez-Ruiz, V., Gámiz-López, V., & Luna-Rodríguez, J. J. (2017). Honey bee colonies remote monitoring system. Sensors, 17(1), 55. https://doi.org/10.3390/s17010055.

    Google Scholar 

Download references

Acknowledgements

This research is funded by the national natural science foundation of China (Grant No. 31800358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Yan, F. & Liu, X. Study of Wireless Communication Technologies on Internet of Things for Precision Agriculture. Wireless Pers Commun 108, 1785–1802 (2019). https://doi.org/10.1007/s11277-019-06496-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06496-7

Keywords

Navigation