Skip to main content

Advertisement

Log in

Performance Enhancement of Underwater Acoustic OFDM Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The supported bandwidth of the underwater communication systems is limited to several kilo hertz, which considers as the main challenge for Underwater Acoustic (UWA) communications. Meanwhile, the Bit-Error-Rate (BER) performance of the UWA systems is degrades as a result of water temperature, water salinity, attenuation, and multi-path propagation. In this paper, we present a modification to the conventional Orthogonal Frequency Division Multiplexing (OFDM) based (FFT) using Fast Walsh–Hadamard transform (FWHT) instead of Fast Fourier Transform (FFT). Also, the proposed algorithm is encoded and decoded using Low Density Parity Check (LDPC) coding algorithm. Simulation results show that the proposed algorithm with LDPC coding can improve the BBER system performance than the corresponding traditional one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Han, W., Huang, J., & Jiang, M. (2009). Performance analysis of underwater digital speech communication system based on LDPC codes. In IEEE 4th international conference industrial electronica and applications (ICIEA).

  2. Ramadan, K., Dessouky, M. I., Elagooz, S., Elkordy, M., & Abd El-Samie, F. E. (2018). Joint low-complexity equalization and carrier frequency offsets compensations for underwater acoustic OFDM communication systems with banded-matrix approximation at different channel conditions. International Journal of Communication Systems. https://doi.org/10.1002/dac.3779.

    Article  Google Scholar 

  3. Ramadan, K., Fiky, A. S., Dessouky, M. I., & Abd El-Samie, F. E. (2019). Joint low-complexity equalization and CFO estimation and compensation for UWA-OFDM communication systems based on discrete sine transform. The Digital Signal Processing Journal, 90, 142–149. https://doi.org/10.1016/j.dsp.2019.02.004.

    Article  Google Scholar 

  4. Ramadan, K., Dessouky, M. I., Abd El-Samie, F. E., & Elagooz, S. (2018). Virtual quadrature phase shift keying with low-complexity equalization for performance enhancement of OFDM systems. International Journal of Electronics and Communications, 96, 199–206. https://doi.org/10.1016/j.aeue.2018.08.031.

    Article  Google Scholar 

  5. Tao, J., Zheng, Y. R., Xiao, C., Yang, T. C., & Yang, W.-B. (2010). Channel equalization for single carrier MIMO underwater acoustic communications. EURASIP Journal on Advances in Signal Processing. https://doi.org/10.1155/2010/281769

    Article  Google Scholar 

  6. Al-Kamali, F. S., Dessouky, M. I., Sallam, B. M., Shawki, F., Al-Hanafy, W., & El-Samie, F. E. (2012). Joint low-complexity equalization and carrier frequency offsets compensation scheme for MIMO SC-FDMA systems. IEEE Transactions on Wireless Communications, 11, 869–873.

    Article  Google Scholar 

  7. Ramadan, K., Dessouky, M., Elkordy, M., Elagooz, S., & Abd-Elasamie, F. E. (2018). Equalization and carrier frequency offset compensation for underwater acoustic OFDM systems. Annals of Data Science, 5, 259–272.

    Article  Google Scholar 

  8. Huang, J. Z., Zhou, S., et al. (2011). Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels. IEEE Journal of Selected Topics in Signal Processing, 5, 1524–1536.

    Article  Google Scholar 

  9. Ramadan, K., Dessouky, M. I., Elagooz, S., Elkordy, M., & Abd El-Samie, F. E. (2019). Carrier frequency offsets estimation in UWA-OFDM communication systems using Zadoff-Chu sequences. International Journal of Electronics Letters, 7(2), 127–142. https://doi.org/10.1080/21681724.2018.1461249.

    Article  Google Scholar 

  10. Kumar, P., & Kumar, P. (2013). Performance evaluation of modified OFDM for underwater communications. In IEEE international conference on communications.

  11. Huang, S., Su, Y., He, Y., & Tang, S. (2012). Joint time and frequency offset estimation in LTE downlink. In International ICST conference on communications and networking, China (CHINACOM).

  12. Ramadan, K. Ramadan, K. F., Fiky, A. S., Alam, H., Dessouky, M. I. & Abd El-Samie, F. E. (2019). Joint low-complexity equalization and CFO estimation and compensation for UWA-OFDM communication systems. The International Journal of Communication Systems. https://doi.org/10.1002/dac.3972.

    Article  Google Scholar 

  13. Ramadan, K., Dessouky, M. I., Abd El-Samie, F. E., & Fiky, A. S. (2019). Equalization and blind CFO estimation for performance enhancement of OFDM communication systems using discrete cosine transform. The International Journal of Communication Systems. https://doi.org/10.1002/dac.3984.

    Article  Google Scholar 

  14. Trivedi, V., Ramadan, K., Kumar, P., Dessouky, M. I., & Abd El-Samie, F. E. (2019). Enhanced OFDM-NOMA for next generation wireless communication: A study of PAPR reduction and sensitivity to CFO and estimation errors. The International Journal of Electronics and Communications, 102, 9–24. https://doi.org/10.1016/j.aeue.2019.01.009.

    Article  Google Scholar 

  15. Trivedi, V., Ramadan, K., Kumar, P., Dessouky, M. I., & Abd El-Samie, F. E. (2019). Trigonometric transforms and precoding strategies for OFDM-based uplink hybrid multi-carrier non-orthogonal multiple access. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.3694.

    Article  Google Scholar 

  16. Yougan, C., Xiaomei, X., & Lan, Z. (2009). Performance analysis of LDPC codes over shallow water acoustic channels. In 5th international conference on wireless communications, networking and mobile computing.

  17. Gallager, R. (1962). Low density parity check codes. IRE Transactions on Information Theory, 8, 21–28.

    Article  MathSciNet  Google Scholar 

  18. Gallager, R. G. (1963). Low density parity check codes. Cambridge: MIT Press.

    MATH  Google Scholar 

  19. Wang, D., Shi, W., & Li, X. (2013). Low-complexity carrier frequency offset estimation algorithm in TD-LTE. Journal of Networks, 8, 2220.

    Google Scholar 

  20. Hamood, M., & Bousskta, S. (2011). Fast Walsh–Hadamard–Fourier transform. IEEE Transactions on Signal Processing, 59, 5626–5673.

    Article  MathSciNet  Google Scholar 

  21. Singer, A. C., Nelson, J. K., & Kozat, S. S. (2009). Signal processing for underwater acoustic communication. IEEE Communications Magazine, 47(1), 90–96.

    Article  Google Scholar 

  22. Qarabaqi, P., & Stojanovic, M. (2013). Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. EEE Journal of Oceanic Engineering, 38, 701–717.

    Article  Google Scholar 

  23. Ding, H., Neasham, J. A., & Boussakta, S. (2015). Performance evaluation of T-transform based OFDM in underwater acoustic communications. In OCEANS 2015Genova, Genoa, Italy, 21 September 2015.

  24. Kumar, P., & Kumar, P. (2013). Performance evaluation of modified OFDM for underwater communications. In IEEE international conference on communications: IEEE ICC’13Workshop on radar and sonar networks (RSN).

  25. Ahmed, M. S., & Al-iesawi, S. A. (2013). Efficient joint carrier offset and channel estimator for T-OFDM system. In The first international conference of electrical, communication, computer, power and control engineering ICECCPCE’13, Iraq.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Mahallawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mahallawy, M., TagEldien, A.S. & Elagooz, S.S. Performance Enhancement of Underwater Acoustic OFDM Communication Systems. Wireless Pers Commun 108, 2047–2057 (2019). https://doi.org/10.1007/s11277-019-06508-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06508-6

Keywords