Skip to main content
Log in

A New XOR-FREE Approach to Implement Walsh Sequences

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a new algorithm to construct a XOR-Free architecture of an area efficient Walsh generator. The approach completely removes the modulo-two operations required for extracting zero crossing and parity in the generation. In its place a new Transition Sequence based approach is introduced to obtain that string. The string then, becomes input to a triggered flip-flop and generate 2n Walsh sequences in dyadic ordering. The approach reduces the conventional sequential design to semi-sequential and thereby reduces the encoding/decoding cost with lesser design complexity. Results of the proposed architecture reduces the area up to 25–90% by extracting both the symmetry and state isomorphism. Further, it improves dynamic power consumption up to 3–60% with increasing sequence length as compare to conventional approach. The hardware co-simulation of the architecture is first validated and then implemented with Xilinx ZYNQ FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Falkowski, B. J., & Sasao, T. (2005). Unified algorithm to generate Walsh functions in four different orderings and its programmable hardware implementations. IEE Proceedings—Vision, Image and Signal Processing, 152(6), 819–826. https://doi.org/10.1049/ip-vis:20045123.

    Article  Google Scholar 

  2. Prasad, R. (1996). CDMA for wireless personal communications (1st ed.). New York: Artech House Inc.

    Google Scholar 

  3. Tisserand, E., & Berviller, Y. (2015). Original structure for Walsh–Hadamard transform on sliding window. Electronics Letters, 51(23), 1850–1852. https://doi.org/10.1049/el.20151246.

    Article  Google Scholar 

  4. Tören, O. D., Ayduslu, E., Aydın, Y., & Özen, A. (2017). A novel Walsh–Hadamard based approach for improving performance of zero tail OFDM systems. In 2017 25th Signal processing and communications applications conference (SIU), Antalya (pp. 1–4). https://doi.org/10.1109/siu.2017.7960627.

  5. Zhang, W., Zhang, Z., Jia, J., & Qi L. (2016). STC-GFDM systems with Walsh–Hadamard transform. In 2016 IEEE international conference on electronic information and communication technology (ICEICT), Harbin (pp. 162–165). https://doi.org/10.1109/iceict.2016.7879674.

  6. Michailow, N., Mendes, L., Matthé, M., Gaspar, I., Festag, A., & Fettweis, G. (2015). Robust WHT-GFDM for the next generation of wireless networks. IEEE Communications Letters, 19(1), 106–109. https://doi.org/10.1109/LCOMM.2014.2374181.

    Article  Google Scholar 

  7. Yuen, C. (1971). Walsh functions and Gray code. IEEE Transactions on Electromagnetic Compatibility, 13(3), 68–73. https://doi.org/10.1109/TEMC.1971.303111.

    Article  Google Scholar 

  8. Durrani, T. S., & Nightingale, J. M. (1971). Sequential generation of binary orthogonal functions. Electronics Letters, 7(13), 377–380. https://doi.org/10.1049/el:19710258.

    Article  Google Scholar 

  9. Kitai, R., & Siemens, K. H. (1972). A hazard-free Walsh-function generator. IEEE Transactions on Instrumentation and Measurement, 21(1), 80–83. https://doi.org/10.1109/TIM.1972.4313965.

    Article  Google Scholar 

  10. Sannino, M. (1978). Multiple-output Walsh function generation for minimum orthogonality error. IEEE Transactions on Instrumentation and Measurement, 27(1), 29–32. https://doi.org/10.1109/TIM.1978.4314612.

    Article  Google Scholar 

  11. Purohit, G., Raju, K. S., & Chaubey, V. K. (2016). A new XOR-Free approach for implementation of convolutional encoder. IEEE Embedded Systems Letters, 8(1), 22–25. https://doi.org/10.1109/LES.2015.2499207.

    Article  Google Scholar 

  12. Purohit, G., Raju, K. S., & Chaubey, V. K. (2016). XOR-FREE implementation of convolutional encoder for reconfigurable hardware. International Journal of Reconfigurable Computing, 2016, 8. https://doi.org/10.1155/2016/9128683.

    Article  Google Scholar 

  13. Yibin, Y., Roy, K., & Drechsler, R. (1999). Power consumption in XOR-based circuits. In Proceedings of ASP-DAC (pp. 299–302).

  14. Huang, C., Li, J., & Chen, M. (2012). Optimizing XOR-based codes. US 8209577 B2, issued June 26, 2012.

  15. Zhihua, L., & Qishan, Z. (1983). Ordering of Walsh functions. IEEE Transactions on Electromagnetic Compatibility, 25(2), 115–119. https://doi.org/10.1109/TEMC.1983.304153.

    Article  Google Scholar 

  16. Robinson, J. P., & Cohn, M. (1981). Counting sequences. IEEE Transactions on Computers, 30(1), 17–23. https://doi.org/10.1109/TC.1981.6312153.

    Article  MathSciNet  MATH  Google Scholar 

  17. Purohit, G., Chaubey, V. K., Raju K. S., & Vyas, D. (2014). FPGA based implementation and power analysis of parameterized Walsh sequences. In Students’ technology symposium, Kharagpur, India (pp. 292–296). https://doi.org/10.1109/techsym.2014.6808063.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Purohit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, G., Vyas, D., Chaubey, V.K. et al. A New XOR-FREE Approach to Implement Walsh Sequences. Wireless Pers Commun 109, 51–60 (2019). https://doi.org/10.1007/s11277-019-06549-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06549-x

Keywords

Navigation