Skip to main content

Advertisement

Log in

Miniaturization of Monopole Patch Antenna with Extended UWB Spectrum via Novel Hybrid Heuristic Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Many of the wireless systems employ ultra wide band (UWB) for its efficient data rate and optimal power consumption. However, all the wireless devices need to have antenna size as small as possible. It is therefore important to design an antenna having the desired UWB features along with highest possible degree of miniaturization. In addition, it gives sufficient flexibility if different geometrical shaped antennas have the same physical and/or electro-magnetic characteristics. To jointly design such multi featured antennas is a complex multi objective optimization problem. These types of problems cannot be solved through classical numerical approaches; instead they require soft computing techniques to find the optimum results. This paper proposes a novel hybrid genetic particle swarm optimization algorithm to jointly optimize three printed monopole antennas for high degree of miniaturization. Moreover, attempt is also made to extend UWB spectrum to have more room for data transmission. The results are effective and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zubair, M., & Moinuddin, M. (2013). Joint optimization of microstrip patch antennas using particle swarm optimization for UWB systems. International Journal of Antennas and Propagation, 2013, 8, Article ID 649049.

  2. FCC Report and Order on Ultra Wideband Technology. (2002). Technical Report. FCC02-48, Federal Communications Commission, Washington, DC, USA.

  3. Schantz, H. G. (2003). Introduction to ultra wideband antennas. In IEEE conference on ultra wideband systems and technologies (pp. 1–9). IEEE.

  4. Ansell, D. W. (2010). PhD Thesis, Antenna performance optimisation using evolutionary algorithms.

  5. Panduro, M. A. (2006). Design of non-uniform linear phased arrays using GA to provide maximum interference reduction capability in a wireless communication system. Journal of the Chinese Institute of Engineers, 29(7), 1195–1201.

    Article  Google Scholar 

  6. Chamaani, S., Mirtaheri, S. A., Teshnehlab, M., & Shooredeli, M. A. (2007). Modified multi-objective PSO for electromagnetic absorber design. In Asia-Pacific conference on applied electromagnetics, 2007. APACE 2007 (pp. 1–5). IEEE.

  7. Jin, N., & Rahmat-Samii, Y. (2007). Advances in PSO for antenna designs: Real-number, binary, single-objective and multi-objective implementations. IEEE Transactions on Antennas and Propagation, 55(3), 556–567.

    Article  Google Scholar 

  8. Panduro, M. A. (2007). Design of coherently radiating structures in a linear array geometry using GA. AEU-International Journal of Electronics and Communications, 61(8), 515–520.

    Article  Google Scholar 

  9. Vaitheeswaran, S. M. (2008). Dual beam synthesis using element position perturbations and the G3-GA algorithm. Progress in Electromagnetics Research, 87, 43–61.

    Article  Google Scholar 

  10. Gurel, L., & Ergul, O. (2008). Design and simulation of circular arrays of trapezoidal tooth log-periodic antennas via GA optimization. Progress in Electromagnetics Research, 85, 243–260.

    Article  Google Scholar 

  11. Li, F., Chen, X., & Huang, K.-M. (2008). Microwave imaging a buried object by the GA and using the S11 parameter. Progress in Electromagnetics Research, 85, 289–302.

    Article  Google Scholar 

  12. Agastra, E., Bellaveglia, G., Lucci, L., Nesti, R., Pelosi, G., Ruggerini, G., et al. (2008). GA optimization of high-efficiency wide-band multimodal square horns for discrete lenses. Progress in Electromagnetics Research, 83, 335–352.

    Article  Google Scholar 

  13. Xu, Z., Li, H., Liu, Q.-Z., & Li, J.-Y. (2008). Pattern synthesis of conformal antenna array by the hybrid GA. Progress in Electromagnetics Research, 79, 75–90.

    Article  Google Scholar 

  14. Li, W.-T., Shi, X.-W., & Hei, Y.-Q. (2008). An improved PSO algorithm for pattern synthesis of phased arrays. Progress in Electromagnetics Research, 82, 319–332.

    Article  Google Scholar 

  15. Huang, C.-H., Chiu, C.-C., Li, C.-L., & Chen, K.-C. (2008). Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by PSO. Progress in Electromagnetics Research, 82, 381–400.

    Article  Google Scholar 

  16. Li, W.-T., Shi, X.-W., Xu, L., & Hei, Y.-Q. (2008). Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis. Progress in Electromagnetics Research, 80, 461–476.

    Article  Google Scholar 

  17. Nguyen, T. H., Morishita, H., Koyanagi, Y., Izuki, K., & Nishiwaki, S. (2014). A multi level optimization method using PSO for the optimal design on an L-shaped folded monopole antenna array. IEEE Transactions on Antennas and Propagation, 62(1), 206–215.

    Article  Google Scholar 

  18. Zubair, M., & Moinuddin, M. (2014). Design and optimization of antenna for MIMO systems via heuristic algorithms. Ph.D. Thesis, IQRA University, Pakistan.

  19. Pozar, D. M. (1992). Microstrip antennas. Proceedings of the IEEE, 80(1), 79–91.

    Article  Google Scholar 

  20. Schaubert, D., Farrar, F., Sindoris, A., & Hayes, S. (1981). Microstrip antennas with frequency agility and polarization diversity. IEEE Transactions on Antennas and Propagation, 29(1), 118–123.

    Article  Google Scholar 

  21. Hammoud, M., Poey, P., & Colombel, F. (1993). Matching the input impedance of a broadband disc monopole. Electronics Letters, 29(4), 406–407.

    Article  Google Scholar 

  22. Kumar, G., & Ray, K. P. (2003). Broad band microstrip antennas. Boston: Artech House.

    Google Scholar 

  23. Agrawall, N. P., Kumar, G., & Ray, K. P. (1998). Wide-band planar monopole antennas. IEEE Transactions on Antennas and Propagation, 46(2), 294–295.

    Article  Google Scholar 

  24. Schantz, H. G. (2002). Planar elliptical element ultra-wideband dipole antennas. In Proceedings of the IEEE antennas and propagation society international symposium (Vol. 3, pp. 44–47).

  25. Zubair, M., & Moinuddin, M. (2014). Joint optimization of printed monopole antennas for UWB applications using heuristic approach. Electronics World, 120(1933), 24–28.

    Google Scholar 

  26. Balanis, C. A. (2012). Antenna theory: analysis and design. New York: Wiley.

    Google Scholar 

  27. Zubair, M., & Moinuddin, M. (2013). Directivity prediction of patch antenna for military applications using artificial neural networks. Electronics World, 110(1902), 37–42.

    Google Scholar 

  28. Kasi, B., Ping, L. C., & Chakrabarty, C. K. (2011). A compact microstrip antenna for ultra wideband applications. European Journal of Scientific Research, 67(1), 45–51.

    Google Scholar 

  29. Sadat, S., Fardis, M., Geran, F., & Dadashzadeh, G. (2007). A compact microstrip square-ring slot antenna for UWB applications. Progress in Electromagnetics Research, 67, 173–179.

    Article  Google Scholar 

  30. Lee, K. F., Luk, K. M., Tong, K. F., Shum, S. M., Huyn, T., & Lee, R. Q. (1997). Experimental and simulation studies of the coaxially fed U–slot rectangular patch. IEEE Proceedings of Microwave Antenna Propagation, 144(5), 354–358.

    Article  Google Scholar 

  31. Kuo, J. S., & Wong, K. L. (2001). A compact microstrip antenna with meandering slots in the ground plane. Microwave and Optical Technology Letters, 29(2), 95–97.

    Article  MathSciNet  Google Scholar 

  32. Hassani, H. R., & Syahkal, D. M. (1995). Study of electromagnetically coupled stacked rectangular patch antenna. IEEE Proceedings of Microwave Antenna Propagation, 142(1), 1–15.

    Article  Google Scholar 

  33. Badjian, M. H., Chakrabarty, C. K., Goh, C. H., & Devkumar, S. An impulse UWB patch antenna with integrated bandpass filter. In Proceedings of the 6th national conference on telecommunication technologies and the 2th Malaysia conference on photonics, Putrajaya, 26–28.

  34. Hall, P. S. (1987). Probe compensation in thick microstrip patches. Electronics Letter, 23(11), 606–607.

    Article  Google Scholar 

  35. Pues, H. F., & Van De Capelle, A. R. (1989). An impedance-matching technique for increasing the bandwidth of microstrip antennas. IEEE Transactions on Antennas Propagation, 37(11), 1345–1354.

    Article  Google Scholar 

  36. Loi, K. W., Uysal, S., & Leong, M. S. (1998). Design of wideband microstrip bowtie patch antenna. Proceedings of Institute Electrical Engineering Microwave Antenna Propagation, 145(2), 137–140.

    Article  Google Scholar 

  37. Ray, K. P. (2008). Design aspects of printed monopole antennas for ultra wide band applications. International Journal of Antennas and Propagation 2008, 8, Article ID 713858.

  38. Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and Information Science, 3(1), P180.

    Article  Google Scholar 

  39. Sharma, D., Gaur, P., & Mittal, A. P. (2014). Comparative analysis of hybrid GAPSO optimization technique with GA and PSO methods for cost optimization of an off-grid hybrid energy system. Energy Technology & Policy, 1(1), 106–114.

    Article  Google Scholar 

  40. Mohammadi, A., & Jazaeri, M. (2007). A hybrid particle swarm optimization- genetic algorithm for optimal location of SVC devices in power system planning. In Proceedings of the 42nd international universities power engineering conference (pp. 1175–1181).

  41. Esmin, A. A. A., Lambert-Torres, G., & Alvarenga, G. B. (2006). Hybrid evolutionary algorithm based on PSO and GA mutation. In Proceedings of the 6th international conference on hybrid intelligent systems.

  42. Jeong, S., Hasegawa, S., Shimoyama, K., & Obayashi, S. (2009). Development and investigation of efficient GA/PSO-hybrid algorithm applicable to real-world design optimization. In IEEE Congress on Evolutionary Computation.

  43. Kao, Y.-T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions. In Applied soft computing 8. Elsevier (pp. 849–857). https://doi.org/10.1016/j.asoc.2007.07.002.

  44. Premalatha, K., & Natarajan, A. M. (2009). Hybrid PSO and GA for global maximization. International Journal of Open Problems in Computer Science and Mathematics, 2, 597–608.

    MathSciNet  Google Scholar 

  45. Jamil, Momin, & Yang, Xin-She. (2013). A literature survey of benchmark functions for global optimization problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150–194.

    Article  Google Scholar 

  46. John, M., & Ammann, M. J. (2005). Optimization of impedance bandwidth for the printed rectangular monopole antenna. Microwave and Optical Technology Letters, 47(2), 153–154.

    Article  Google Scholar 

  47. Mohamed, H. A.-S., Abdelnasser, A. E., Atef, Z. E., & Charles, E. S. (2004). Design of wideband printed monopole antenna using WIPL-D. In Proceedings of the 20th annual review of progress in applied computational electromagnetics (ACES’04), Syracuse, NY, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zubair.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubair, M., Ahmad, J. & Rizvi, S.S.H. Miniaturization of Monopole Patch Antenna with Extended UWB Spectrum via Novel Hybrid Heuristic Approach. Wireless Pers Commun 109, 539–562 (2019). https://doi.org/10.1007/s11277-019-06578-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06578-6

Keywords

Navigation