Skip to main content

Advertisement

Log in

A Broadband High Gain Tapered Slot Antenna for Underwater Communication in Microwave Band

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A broadband high gain Tapered slot antenna array for under water communication is presented in this paper. The procedure to design the unit element antenna is followed by applying a linear tapered array-slot structure to the conventional Vivaldi antenna; hence the bandwidth, gain and radiation efficiency of the antenna are improved. The proposed antenna array is designed on the low-cost FR4 epoxy substrate material with value of dielectric constant \(\varepsilon _r= 4.4\), and loss tangent \(\delta = 0.02\). The reduction of the feed line width and location adjustment is used to expand the impedance bandwidth of the proposed antenna. Moreover, the single antenna element is expanded to \(1\times 2\), \(1\times 4\) and \(2\times 4\) to form an antenna array respectively. The dimensions of the developed array antenna are satisfying the proper impedance matching. The simulated reflection coefficient results confirm that the proposed antenna array achieves an impedance bandwidth of above 55% obtained at 10 dB return loss, the peak realized gain of 10.75 dBi and radiation efficiency of more than 90%. The measured results show a good agreement and hence making the designed antenna array appropriate to work in the underwater communication band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kanagasabai, M., Lawrance, L., George, J. V., Rajendran, D. B., Moorthy, B., Natarajan, R., et al. (2016). Modified antipodal Vivaldi antenna for ultra-wideband communications. IET Microwaves, Antennas & Propagation, 10(4), 401–405. https://doi.org/10.1049/iet-map.2015.0089.

    Article  Google Scholar 

  2. Aboufoul, T., Alomainy, A., & Parini, C. (2012). Reconfigured and notched tapered slot UWB antenna for cognitive radio applications. International Journal of Antennas and Propagation, 2012, 1–8.

    Article  Google Scholar 

  3. Woo, D. S., Kim, K. W., & Choi, H. C. (2014). A broadband and high gain tapered slot antenna for W-band imaging array applications. International Journal of Antennas and Propagation, 2014, 1–7. https://doi.org/10.1155/2014/378527.

    Article  Google Scholar 

  4. Abbosh, A. M. (2008). Directive antenna for ultrawideband medical imaging systems. International Journal of Antennas and Propagation, 2008, 1–6. https://doi.org/10.1155/2008/854012.

    Article  Google Scholar 

  5. Lim, T. H., Park, J. E., & Choo, H. (2018). Design of a Vivaldi-fed hybrid horn antenna for low-frequency gain enhancement. IEEE Transactions on Antennas and Propagation, 66(1), 438–443.

    Article  Google Scholar 

  6. Shao, J., Fang, G., Ji, Y., Tan, K., & Yin, H. (2013). A novel compact tapered-slot antenna for GPR applications. IEEE Antennas and Wireless Propagation Letters, 12, 972–975. https://doi.org/10.1109/LAWP.2013.2276403.

    Article  Google Scholar 

  7. Gibson, P. J. (1979). The vivaldi aerial. In Microwave conference, 1979. 9th European (pp. 101–105). IEEE.

  8. Adamu, S. A., Masri, T., Abidin, W. A. W. Z., & Ping, K. H. (2017). Review on gain and directivity enhancement techniques of Vivaldi antennas. Internationa l Journal of Scientific & Engineering Research, 8(3), 1919–1927.

    Google Scholar 

  9. Hendrantoro, G., & E. Setijadi. (2017). Total array pattern characteristics of coplanar vivaldi antenna in E-plane with different element width for S and C band application. In 2017 Progress in electromagnetics research symposium-fall (PIERS-FALL) (pp. 1136–1143). IEEE.

  10. Kartal, M., & Karamzadeh, S. (2015). Circularly polarised MIMO tapered slot antenna array for C-band application. Electronics Letters, 51(18), 1394–1396. https://doi.org/10.1049/el.2015.1784.

    Article  Google Scholar 

  11. Dwivedi, G. (2012). An ultra wideband wide beam strip line fed taper slot antenna for active phased array Jammer. International Journal of Engineering and Advanced Technology, 6, 124–126.

    MathSciNet  Google Scholar 

  12. Shukla, S., Upadhyay, N., Sharma, S., & Hemrajani, N. (2013). C-band vivaldi antenna and its array. Asian Journal of Engineering and Applied Technology, 2(1), 28–35.

    Google Scholar 

  13. Tu, W. H., Kim, S. G., & Chang, K. (2007). Wideband microstrip-fed tapered slot antennas and phased array. International Journal of RF and Microwave Computer-Aided Engineering: Co-sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics (CAMP mode) at the University of Colorado at Boulder, 17(2), 233–242.

    Article  Google Scholar 

  14. Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater wireless sensor communications in the 2.4 GHz ISM frequency band. Sensors, 12(4), 4237–4264. https://doi.org/10.3390/s120404237.

    Article  Google Scholar 

  15. Aiello, G. R., & Rogerson, G. D. (2003). Ultra-wideband wireless systems. IEEE Microwave Magazine, 4(2), 36–47.

    Article  Google Scholar 

  16. Xu, L., Yuan, B., & He, S. (2013). Design of novel UWB slot antenna for bluetooth and UWB applications. Progress in Electromagnetics Research, 37, 211–221.

    Article  Google Scholar 

  17. See, C. H., Hraga, H. I., Abd-Alhameed, R. A., McEwan, N. J., Noras, J. M., & Excell, P. S. (2013). A low-profile ultra-wideband modified planar inverted-f antenna. IEEE Transactions on Antennas and Propagation, 61(1), 100–108. https://doi.org/10.1109/TAP.2012.2216494.

    Article  Google Scholar 

  18. Li, M., & Luk, K. M. (2013). A differential-fed magneto-electric dipole antenna for UWB applications. IEEE Transactions on Antennas and Propagation, 61(1), 92–99. https://doi.org/10.1109/TAP.2012.2220100.

    Article  Google Scholar 

  19. Khalilzadeh, A., Tan, A. E. C., & Rambabu, K. (2013). Design of an integrated UWB antenna with dual band notch characteristics. AEU - International Journal of Electronics and Communications, 67(5), 433–437. https://doi.org/10.1016/j.aeue.2012.10.015.

    Article  Google Scholar 

  20. Luk, K. M., Li, M., & Ge, L. (2013). Recent development of the magneto-electric dipole Ultra-wideband and high frequency applications. In 2013 7th European conference on antennas and propagation (EuCAP) (pp. 385–386). IEEE.

  21. Ge, L., & Luk, K. M. (2013). A magneto-electric dipole for unidirectional UWB communications. IEEE Transactions on Antennas and Propagation, 61(11), 5762–5765.

    Article  Google Scholar 

  22. Li, X., Wiesbeck, W., & Zwick, T. (2013). Design considerations for UWB antennas. In Eucap (pp. 550–553).

  23. Abdou, A. A., Shaw, A., Cullen, J., Wylie, S., Mason, A., & Al-Shamma, A. (2011). A review of underwater EM wave propagation to investigate the development of a through water WSN. In 6th built environment and natural environment.

  24. Shaw, A., Al-Shamma’a, A. I., Wylie, S. R., & Toal, D. (2007). Experimental investigations of electromagnetic wave propagation in seawater. In Proceedings of the 36th European microwave conference, EuMC 2006, (September) (pp. 572–575). https://doi.org/10.1109/EUMC.2006.281456.

  25. Waheed-uz-Zaman, M. (2011). Design and construction of very low frequency antenna. Journal of Basic and Applied Sciences, 7(2), 141–145.

    Article  Google Scholar 

  26. Mendez, H. F. G., Le Pennec, F., Gac, C., & Person, C. (2011). High performance underwater UHF radio antenna development. In OCEANS 2011 IEEE, Spain, (July). https://doi.org/10.1109/Oceans-Spain.2011.6003480.

  27. Zhang, F., Zhang, F. S., Lin, C., Zhao, G., & Jiao, Y. C. (2009). Design and parameter study of a small size tapered slot antenna. Journal of Electromagnetic Waves and Applications, 23(5), 655–661. https://doi.org/10.1163/156939309788019912.

    Article  Google Scholar 

  28. Shin, J., & Schaubert, D. H. (1999). A parameter study of stripline-fed vivaldi notch-antenna arrays. IEEE Transactions on Antennas and Propagation, 47(5), 879–886. https://doi.org/10.1109/8.774151.

    Article  Google Scholar 

  29. Kumar, B., Vardhan, K. A., & Sharma, P. (2018). Design of slotted Vivaldi antenna for through wall imaging system. In 11th international conference on industrial and information systems, ICIIS 2016—conference proceedings, 2018–Janua (pp. 704–709). https://doi.org/10.1109/ICIINFS.2016.8263029

  30. Naji, D. K. (2013). Compact broadband CPW-fed taper-shaped monopole antenna with L-slots for C-band applications. International Journal of Electromagnetics and Applications, 3(6), 136–143. https://doi.org/10.5923/j.ijea.20130306.02.

    Article  Google Scholar 

  31. Schaubert, D. H., Kollberg, E. L., Korzeniowski, T., Thungren, T., Johansson, J., & Yngvesson, K. S. (1985). Endfire tapered slot antennas on dielectric substrates. IEEE Transactions on Antennas and Propagation, 33(12), 1392–1400. https://doi.org/10.1109/TAP.1985.1143542.

    Article  Google Scholar 

  32. Dardeer, O. M., Abouelnaga, T. G., Mohra, A. S., & El-Hennawy, H. M. (2016). A novel UWB Vivaldi antenna array for radar applications. International Journal of Scientific & Engineering Research, 7(5), 1169–1174.

    Google Scholar 

  33. Janaswamy, R., & D. H. Schaubert. (1986). Characteristic impedance of a wide slotline on low-permittivity substrates (short paper). IEEE Transactions on Microwave Theory and Techniques, 34(8), 900–902.

    Article  Google Scholar 

  34. Ray, K. P., Nirmala, K., Kakatkar, S. S., Madaka, N. S., & Prince, C. (2013). Broadband modified Wilkinson power divider fed antipodal Vivaldi antenna array. In 2013 international conference on microwave and photonics, ICMAP 2013, 6–9. https://doi.org/10.1109/ICMAP.2013.6733501.

  35. Wang, Y., & Fathy, A. (2008). Design of a compact tapered slot Vivaldi antenna array for see through concrete wall UWB applications. Progress in Electromagnetics, 1(2), 3–6. https://doi.org/10.2528/PIER08040601.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Higher Education Commision, Pakistan (Grant No. NRPU #6786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badar Muneer.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soothar, P., Wang, H., Muneer, B. et al. A Broadband High Gain Tapered Slot Antenna for Underwater Communication in Microwave Band. Wireless Pers Commun 116, 1025–1042 (2021). https://doi.org/10.1007/s11277-019-06633-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06633-2

Keywords

Navigation