Skip to main content
Log in

An Efficient Target Tracking in Directional Sensor Networks Using Adapted Unscented Kalman Filter

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper we have considered an efficient adapted Unscented Kalman Filter based target tracking in directional wireless sensor networks while observations are noise-corrupted. In directional sensor networks, sensors are able to observe the target only in specified (and certainly changeable) directions. Also, sensor nodes are capable of measuring the bearings (relative angle to the target). To make target tracking efficient, first, we use scheduling algorithm which determines the sensor nodes activity. Also coverage is a challenge that we will discuss in this paper as well. Sensor nodes activation algorithm directly affects the target areas coverage. Second, we use time series to predict the motion of the target. Using ARIMA, in each step of target position estimation, an area will be predicted where the target would be there with high probability. Third, we use a version of UKF, which is adjusted to the requirements of the target tracking application, to determine the position of the target with desired precision. Fourth, a routing algorithm called as C-RPL is used to perform the communications between sensor nodes in each step. Simulation results approve that the proposed efficient target tracking algorithm achieves its goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing,68(1), 1–48.

    Article  Google Scholar 

  2. Demigha, O., Hidouci, W.-K., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. Communications Surveys & Tutorials, IEEE,15(3), 1210–1222.

    Article  Google Scholar 

  3. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer networks,52(12), 2292–2330.

    Article  Google Scholar 

  4. Vasuhi, S., & Vaidehi, V. (2016). Target tracking using interactive multiple model for wireless sensor network. Information Fusion,27, 41–53.

    Article  Google Scholar 

  5. Lersteau, C., Rossi, A., & Sevaux, M. (2016). Robust scheduling of wireless sensor networks for target tracking under uncertainty. European Journal of Operational Research,252(2), 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  6. Mohamadi, H., Ismail, A. S., & Salleh, S. (2013). Utilizing distributed learning automata to solve the connected target coverage problem in directional sensor networks. Sensors and Actuators, A: Physical,198, 21–30.

    Article  Google Scholar 

  7. Guvensan, M. A., & Yavuz, A. G. (2011). On coverage issues in directional sensor networks: A survey. Ad Hoc Networks,9(7), 1238–1255.

    Article  Google Scholar 

  8. Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications,35(2), 619–632.

    Article  Google Scholar 

  9. Zhao, L., Bai, G., Jiang, Y., Shen, H., & Tang, Z. (2014). Optimal deployment and scheduling with directional sensors for energy-efficient barrier coverage. International Journal of Distributed Sensor Networks,10(1), 1–9.

    Article  Google Scholar 

  10. Rossi, A., Singh, A., & Sevaux, M. (2013). Lifetime maximization in wireless directional sensor network. European Journal of Operational Research,231(1), 229–241.

    Article  Google Scholar 

  11. Mohamadi, H., Salleh, S., & Razali, M. N. (2014). Heuristic methods to maximize network lifetime in directional sensor networks with adjustable sensing ranges. Journal of Network and Computer Applications,46, 26–35.

    Article  Google Scholar 

  12. Zhu, X., Li, J., Chen, X., & Zhou, M. (2017). Minimum cost deployment of heterogeneous directional sensor networks for differentiated target coverage. IEEE Sensors Journal,17(15), 4938–4952.

    Article  Google Scholar 

  13. Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing,71(10), 1318–1326.

    Article  Google Scholar 

  14. Shen, X., & Varshney, P. K. (2014). Sensor selection based on generalized information gain for target tracking in large sensor networks. IEEE Transactions on Signal Processing,62(2), 363–375.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sahoo, P. K., Sheu, J.-P., & Hsieh, K.-Y. (2013). Target tracking and boundary node selection algorithms of wireless sensor networks for internet services. Information Sciences,230, 21–38.

    Article  MathSciNet  Google Scholar 

  16. Jin, Y., Ding, Y., Hao, K., & Jin, Y. (2015). An endocrine-based intelligent distributed cooperative algorithm for target tracking in wireless sensor networks. Soft Computing,19(5), 1427–1441.

    Article  Google Scholar 

  17. Pino-Povedano, S., & González-Serrano, F.-J. (2014). Comparison of optimization algorithms in the sensor selection for predictive target tracking. Ad Hoc Networks,20, 182–192.

    Article  Google Scholar 

  18. Teng, J., Snoussi, H., Richard, C., & Zhou, R. (2012). Distributed variational filtering for simultaneous sensor localization and target tracking in wireless sensor networks. IEEE Transactions on Vehicular Technology,61(5), 2305–2318.

    Article  Google Scholar 

  19. Luo, C., Li, W., Fan, M., Yang, H., & Fan, Q. (2014). A collaborative positioning algorithm for mobile target using multisensor data integration in enclosed environments. Computer Communications,44, 26–35.

    Article  Google Scholar 

  20. Misra, S., Singh, S., Khatua, M., & Obaidat, M. S. (2015). Extracting mobility pattern from target trajectory in wireless sensor networks. International Journal of Communication Systems,28(2), 213–230.

    Article  Google Scholar 

  21. Yu, Z.-J., Wei, J.-M., & Liu, H.-T. (2009). Energy-efficient collaborative target tracking algorithm using cost-reference particle filtering in wireless acoustic sensor networks. The Journal of China Universities of Posts and Telecommunications,16(1), 9–43.

    Article  Google Scholar 

  22. Pino-Povedano, S., Arroyo-Valles, R., & Cid-Sueiro, J. (2014). Selective forwarding for energy-efficient target tracking in sensor networks. Signal Processing,94, 557–569.

    Article  Google Scholar 

  23. Yang, W., Chen, G., Wang, X., & Shi, L. (2014). Stochastic sensor activation for distributed state estimation over a sensor network. Automatica,50(8), 2070–2076.

    Article  MathSciNet  MATH  Google Scholar 

  24. Shang, C., Chen, G., Ji, C., & Chang, C.-Y. (2015). An efficient target tracking mechanism for guaranteeing user-defined tracking quality in WSNs. IEEE Sensors Journal,15(9), 5258–5271.

    Article  Google Scholar 

  25. Feng, J., Lian, B., & Zhao, H. (2015). Coordinated and adaptive information collecting in target tracking wireless sensor networks. IEEE Sensors Journal,15(6), 3436–3445.

    Article  Google Scholar 

  26. Bhuiyan, M., Wang, G., & Vasilakos, A. (2014). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers,64(7), 1968–1982.

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X., Wang, T., Chen, S., Fan, R., Xu, Y., Wang, W., et al. (2016). Track fusion based on threshold factor classification algorithm in wireless sensor networks. International Journal of Communication Systems,30(7), e3164.

    Article  Google Scholar 

  28. Nayebi-Astaneh, A., Pariz, N., & Naghibi-Sistani, M.-B. (2015). Adaptive node scheduling under accuracy constraint forwireless sensor nodes with multiple bearings-only sensing units. IEEE Transactions on Aerospace and Electronic Systems,51(2), 1547–1557.

    Article  Google Scholar 

  29. Zheng, J., Bhuiyan, M. Z. A., Liang, S., Xing, X., & Wang, G. (2014). Auction-based adaptive sensor activation algorithm for target tracking in wireless sensor networks. Future Generation Computer Systems,39, 88–99.

    Article  Google Scholar 

  30. Liang, Y., Feng, X., Yang, F., Jiao, L., & Pan, Q. (2013). The distributed infectious disease model and its application to collaborative sensor wakeup of wireless sensor networks. Information Sciences,223, 192–204.

    Article  MathSciNet  Google Scholar 

  31. Lin, J., Xiao, W., Lewis, F. L., & Xie, L. (2009). Energy-efficient distributed adaptive multisensor scheduling for target tracking in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement,58(6), 1886–1896.

    Article  Google Scholar 

  32. Mohajerzadeh, A. H., Yaghmaee, M. H., & Zahmatkesh, A. (2015). Efficient data collecting and target parameter estimation in wireless sensor networks. Journal of Network and Computer Applications,57, 142–155.

    Article  Google Scholar 

  33. Hu, X., Hu, Y. H., & Xu, B. (2014). Energy-balanced scheduling for target tracking in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN),11(1), 21.

    Article  Google Scholar 

  34. Jiang, B., Ravindran, B., & Cho, H. (2013). Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor networks. IEEE Transactions on Mobile Computing,12(4), 735–747.

    Article  Google Scholar 

  35. Shi, K., Chen, H., & Lin, Y. (2015). Probabilistic coverage based sensor scheduling for target tracking sensor networks. Information Sciences,292, 95–110.

    Article  Google Scholar 

  36. Cryer, J. D., & Kellet, N. (1986). Time series analysis (Vol. 286). Berlin: Springer.

    Google Scholar 

  37. Djotio, T. N., & Nouho, J. S. N. (2012). Problem of standardization of configuration data in wireless sensor networks: The case of routing protocols. Wireless Sensor Network,4(7), 177.

    Article  Google Scholar 

  38. Winter, T., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC6550.

  39. Vasseur, J. (2011). Terminology in low power and lossy networks. (Work in progress).

  40. Gaddour, O., & Koubâa, A. (2012). RPL in a nutshell: A survey. Computer Networks,56(14), 3163–3178.

    Article  Google Scholar 

  41. Agusti-Torra, A., Cervello-Pastor, C., & Fiol, M. A. (2013). ID routing mechanism for opportunistic multi-hop networks. Communications Letters, IEEE,17(12), 2388–2391.

    Article  Google Scholar 

  42. Thubert, P. (2012). Objective function zero for the routing protocol for low-power and lossy networks (RPL).

  43. Gnawali, O., & Levis, P. (2010). The ETX objective function for RPL.

  44. Brachman, A. (2013). RPL objective function impact on LLNS topology and performance. In Internet of things, smart spaces, and next generation networking (pp. 340–351). Springer.

  45. Karkazis, P., Leligou, H. C., Sarakis, L., Zahariadis, T., Trakadas, P., Velivassaki, T. H., et al. (2012). Design of primary and composite routing metrics for RPL-compliant wireless sensor networks. In 2012 international conference on telecommunications and multimedia (TEMU) (pp. 13–18). IEEE.

  46. Long, N. T., Uwase, M.-P., Tiberghien, J., & Steenhaut, K. (2013). QoS-aware cross-layer mechanism for multiple instances RPL. In 2013 international conference on advanced technologies for communications (ATC) (pp. 44–49). IEEE.

Download references

Acknowledgements

This work is funded and supported by Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Mohajerzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi-Ghodousi, Z., Hosseinpour, M., Safaei, F. et al. An Efficient Target Tracking in Directional Sensor Networks Using Adapted Unscented Kalman Filter. Wireless Pers Commun 109, 1925–1954 (2019). https://doi.org/10.1007/s11277-019-06660-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06660-z

Keywords

Navigation