Skip to main content
Log in

Design of Surface Defects Loaded Selectively Notched W-Band Waveguide Filter for Millimeter Wave Diagnostic in Fusion Reactor

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the fusion experiment, sensitive radio frequency signal diagnostic instruments need to be protected against high power stray radiation coming from the Electron Cyclotron Resonance Heating. The design of a stopband notch filter in the transmission path of the diagnostic system is helpful to avoid the stray radiations. This work presents the study and design methodology of the notch filter based on a circular corrugated waveguide Bragg reflector that provides a single stopband between 75 and 105 GHz. The existence of the HE11 mode, i.e. the only propagating mode in the W-band notch filter is the key aspect in the design of the filter. The proposed notch filter is compact and spans only 46.62 cm in length with an inner diameter of 16.4 mm. By optimizing the number of corrugation to 140, their period to λ through parametric analysis and unconventionally introducing uniformly spaced surface defects within the filter structure, a single stopband at 90 GHz is obtained corresponding to the LP12 Bragg resonance. The notch filter may be useful in wideband diagnostics like Electron Cyclotron Emission and reflectometry in the fusion plasma experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Denisov, G. G., Chirkov, A. V., Belousov, V. I., Bogdashov, A. A., Kalynova, G. I., Sobolev, D. I., et al. (2011). Millimeter wave multi-mode transmission line components. Journal of Infrared, Millimeter, and Terahertz Waves,32, 343.

    Article  Google Scholar 

  2. Hirani, R. R., Pathak, S. K., Shah, S. N., & Sharma, D. K. (2018). Dispersion characteristics of dielectric tube waveguide loaded with plasma for leaky wave antenna application. AEU - International Journal of Electronics and Communications,83, 123.

    Article  Google Scholar 

  3. Thumm, M. (2003). MW gyrotron development for fusion plasma applications. Plasma Physics and Controlled Fusion,45, A143.

    Article  Google Scholar 

  4. Nanni, E. A., Barnes, A. B., Griffin, R. G., & Temkin, R. J. (2011). Vacuum electronic high power terahertz sources. IEEE Transactions on Terahertz Science and Technology,1, 145.

    Article  Google Scholar 

  5. Isei, N., Isayama, A., Ishida, S., Sato, M., Oikawa, T., Fukuda, T., et al. (2001). Electron cyclotron emission measurements in JT-60U. Fusion Engineering and Design,53, 213.

    Article  Google Scholar 

  6. Zerbini, M., Bombarda, F., Doria, A., Galatola-Teka, G., & Giovenale, E. (2016). From FIR and millimeter waves to THz plasma diagnostics applications. In 41st international conference on infrared, millimeter, and terahertz waves (IRMMW-THz), p. 1.

  7. Henderson, M. A., Alberti, S., Benin, P., Bonicelli, T., Chavan, R., Campbell, D., et al. (2007). EU developments of the ITER ECRH system. Fusion Engineering and Design,82, 454.

    Article  Google Scholar 

  8. Gandini, F., Bigelow, T. S., Becket, B., Caughman, J. B., Cox, D., Darbos, C., et al. (2011). The ec h&cd transmission line for iter. Fusion Science and Technology,59, 709.

    Article  Google Scholar 

  9. Donné, A. J. H., Costley, A. E., Barnsley, R., Bindslev, H., Boivin, R., Conway, G., et al. (2007). Chapter 7: Diagnostics. Nuclear Fusion,47, S337.

    Article  Google Scholar 

  10. Woskov, P. (2007). Notch filter options for ITER stray gyrotron radiation. In Proceeding 13th international symposium on laser aided plasma diagnostics, Takayama, Japan.

  11. Woskov, P., Bindslev, H., Leipold, F., Meo, F., Nielsen, S. K., Tsakadze, E. L., et al. (2006). Current fast ion collective Thomson scattering diagnostics at TEXTOR and ASDEX Upgrade, and ITER plans. Review of Scientific Instruments,77, 1.

    Article  Google Scholar 

  12. Jana, R., & Bhattacharjee, R. (2015). Matched feed design employing TE01 and TM11 modes in a smooth walled rectangular waveguide for cross-polar reduction in offset reflector antenna systems. AEU - International Journal of Electronics and Communications,69, 873.

    Article  Google Scholar 

  13. Chong, C. K., McDermott, D. B., Razeghi, M. M., Luhmann, N. C., Pretterebner, J., Wagner, D., et al. (1992). Bragg reflectors. IEEE Transactions on Plasma Science.,20, 393.

    Article  Google Scholar 

  14. Geist, T., & Bergbauer, M. (1994). Waveguide band-stop filters for 70 and 140 GHz. International Journal of Infrared and Millimeter Waves,15, 2043.

    Article  Google Scholar 

  15. Dryagin, Y., Scalyga, N., & Geist, T. (1996). A notch filter for 140 GHz microwave radiation. International Journal of Infrared and Millimeter Waves,17, 1199.

    Article  Google Scholar 

  16. Goldsmith, P. F., & Schlossberg, H. (1980). A quasi-optical single sideband filter employing a semiconfocal resonator. IEEE Transactions on Microwave Theory and Techniques,28, 1136.

    Article  Google Scholar 

  17. Denisov, G. G., Kuzikov, S. V., & Shmelyo, M. Y. (1993). Quasi-optical narrow-band notch filters. In 18th international conference on infrared and millimeter waves, Colchester, UK, p. 353.

  18. Helminger, P., & De Lucia, F. C. (1977). Pressure broadening of hydrogen sulfide. Journal of Quantitative Spectroscopy and Radiative Transfer,17, 751.

    Article  Google Scholar 

  19. Doose, J., Mäder, H., Schwarz, R., & Guarnieri, A. (1994). Investigations of the pressure broadening of OCS and CO rotational lines in the millimetre wave range using a new type of Fourier transform spectrometer. Molecular Physics,81, 547.

    Article  Google Scholar 

  20. Wagner, D., Kasparek, W., Leuterer, F., Monaco, F., Münich, M., Schütz, H., et al. (2011). Recent upgrades and extensions of the ASDEX upgrade ECRH system. Journal of Infrared, Millimeter, and Terahertz Waves,32, 274.

    Article  Google Scholar 

  21. Thumm, M., Wagner, D., de Rijk, E., Bongers, W., Kasparek, W., Leuterer, F., et al. (2013). Multi-frequency notch filters and corrugated 200 to 400 GHz waveguide components manufactured by stacked ring technology. Terahertz Science and Technology, 6, 212–222.

    Google Scholar 

  22. Clarricoats, P. J. B., & Saha, P. K. (1971). Propagation and radiation behaviour of corrugated feeds. Part 1: Corrugated-waveguide feed. Proceedings of the Institution of Electrical Engineers,118, 1167.

    Article  Google Scholar 

  23. Clarricoats, P. J. B., & Saha, P. K. (1971). Propagation and radiation behaviour of corrugated feeds. Part 2: Corrugated-conical-horn feed. Proceedings of the Institution of Electrical Engineers,118, 1177.

    Article  Google Scholar 

  24. Clarricoats, P. J. B., Olver, A. D., & Chong, S. L. (1975). Attenuation in corrugated circular waveguides. Part 1: Theory. Proceedings of the Institution of Electrical Engineers,122, 1173.

    Article  Google Scholar 

  25. Clarricoats, P. J. B., Olver, A. D., & Chong, S. L. (1975). Attenuation in corrugated circular waveguides. Part 2: Experiment. Proceedings of the Institution of Electrical Engineers,122, 1180.

    Article  Google Scholar 

  26. Dragone, C. (1980). Attenuation and radiation characteristics of the HE/Sub 11/-Mode. IEEE Transactions on Microwave Theory and Techniques,28, 704.

    Article  Google Scholar 

  27. McElhinney, P., Donaldson, C. R., Zhang, L., Cross, A. W., & He, W. (2014). W-band quasi-optical mode converters for gyro-devices. In 2nd IET annual active and passive RF devices seminar, p. 1.

  28. McElhinney, P., Donaldson, C. R., Zhang, L., & He, W. (2013). A high directivity broadband corrugated horn for W-band gyro-devices. IEEE Transactions on Antennas and Propagation,61, 1453.

    Article  Google Scholar 

  29. Doane, J. L. (2008). Design of circular corrugated waveguides to transmit millimeter waves at ITER. Fusion Science and Technology,53, 159–173.

    Article  Google Scholar 

  30. Doane, J. L., & Button, K. J. (1985). Millimeter waves. In P. Patil (Ed.), Millimeter components and techniques, part 4, place: Published. Harcourt Brace Jovanovich, pp. 123–169.

  31. Dhuda, H. V., Kosta, Y., Kargathara, S., & Pandya, H. (2013). Design of the transition (mode converter) from fundamental circular waveguide to free space gaussian beam. Journal of Information, Knowledge and Research in Electronics and Communication Engineering, 2, 745.

    Google Scholar 

  32. Computer Simulation Technology. CST Microwave Studio Suite. (2016). [Online]. http://www.cst.com/. Accessed 16 July 2018.

  33. Clarricoats, P. J. B., & Oliver, A. D. (1984). Corrugated horns for microwave antennas. IEE Electromagnetic Waves Series 18. London: Peter Oeregri.us Ltd.

    Book  Google Scholar 

  34. Xiaolei, Z. (1993). Design of conical corrugated feed horns for wide-band high-frequency applications. IEEE Transactions on Microwave Theory and Techniques,41, 1263.

    Article  Google Scholar 

Download references

Acknowledgements

This Publication is an outcome of the R&D work undertaken in the project under the Visvesvaraya Ph.D. Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia). The authors thank the IPR director, ITER-India project director, and Electronics Engineering Department, SVNIT for providing the research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirenkumar V. Dhuda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhuda, H.V., Patel, P.N. & Pandya, H.B. Design of Surface Defects Loaded Selectively Notched W-Band Waveguide Filter for Millimeter Wave Diagnostic in Fusion Reactor. Wireless Pers Commun 110, 69–83 (2020). https://doi.org/10.1007/s11277-019-06712-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06712-4

Keywords

Navigation