Skip to main content

Advertisement

Log in

Routing with Energy Harvesting and Adaptive Transmit Power for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, we suggest routing protocols with Energy Harvesting and adaptive transmit power for cognitive radio networks. the secondary source and relays harvest energy from wireless signal transmitted by node A. the transmitted power of secondary nodes is adapted so that interference to primary receiver (\(P_R\)) lower than interference threshold I. We suggest optimal routing that activates the best path between source and destination. Suboptimal routing is also considered where the network is decomposed in many subnetworks then the best path is activated in each subnetwork. One hop routing is also investigated where the best relay is selected in each subnetwork.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhan, J., Liu, Y., Tang, X., & Chen, Q. (2018). Relaying protocols for buffer-aided energy harvesting wireless cooperative networks. IET Networks, 7(3), 109–118.

    Article  Google Scholar 

  2. Xiuping, Wang, Feng, Yang, & Tian, Zhang. (2018). The DF-AF selection relay transmission based on energy harvesting. In 2018 10th International conference on measuring technology and mechatronics automation (ICMTMA) (pp. 174–177).

  3. Nguyen, H. T., Nguyen, S. Q., & Hwang, W.-J. (2018). Outage probability of energy harvesting relay systems under unreliable backhaul connections. In 2018 2nd International conference on recent advances in signal processing telecommunications and computing (SigTelCom) (pp. 19–23).

  4. Qiu, C., Hu, Y., & Chen, Y. (2018). Lyapunov Optimized cooperative communications with stochastic energy harvesting relay. IEEE Internet of Things Journal, 5(2), 1323–1333.

    Article  Google Scholar 

  5. Sui, D., Hu, F., Zhou, W., Shao, M., & Chen, M. (2018). Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal, 5(2), 1100–1107.

    Article  Google Scholar 

  6. Dung, L. T., Hoang, T. M., Tan, N. T., & Choi, S.-G. (2018). Analysis of partial relay selection in NOMA systems with RF energy harvesting. In 2018 2nd international conference on recent advances in signal processing telecommunications and computing (SigTelCom) (pp 13–18).

  7. Le, Q. N., Bao, V. N. Q., & An, B. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.

    Article  Google Scholar 

  8. Gong, J., Chen, X., & Xia, M. (2018). Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Transactions on Wireless Communications, 17(5), 3046–3058.

    Article  Google Scholar 

  9. Tang, H., Xie, X., & Chen, J. (2018). X-duplex relay with self-interference signal energy harvesting and its hybrid mode selection method. In 2018 27th wireless and optical communication conference (WOCC) (pp. 1–6).

  10. Chiu, H.-C., & Huang, W.-J. (2018). Precoding design in two-way cooperative system with energy harvesting relay. In 2018 27th wireless and optical communication conference (WOCC) (pp. 1–5).

  11. Gurjar, D. S., Singh, U., & Upadhyay, P. K. (2018). Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In 2018 IEEE wireless communications and networking conference (WCNC) (pp. 1–6).

  12. Singh, K., Ku, M.-L., Lin, J.-C., & Ratnarajah, T. (2018). Toward optimal power control and transfer for energy harvesting amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 17(8), 4971–4986.

    Article  Google Scholar 

  13. Wu, Y., Qian, L., Ping, H. L., & Shen, X. (2018). Optimal relay selection and power control for energy-harvesting wireless relay networks. IEEE Transactions on Green Communications and Networking, 2(2), 471–481.

    Article  Google Scholar 

  14. Fan, R., Atapattu, S., Chen, W., Zhang, Y., & Evans, J. (2018). Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access, 6, 24582–24595.

    Article  Google Scholar 

  15. Huang, Y., Wang, J., Zhang, P., & Wu, Q. (2018). Performance analysis of energy harvesting multi-antenna relay networks with different antenna selection schemes. IEEE Access, 6, 5654–5665.

    Article  Google Scholar 

  16. Babaei, M., Aygölü, Ü., & Basar, E. (2018). BER analysis of dual-hop relaying with energy harvesting in Nakagami-m Fading Channel. IEEE Transactions on Wireless Communications, 17(7), 4352–4361.

    Article  Google Scholar 

  17. Kalluri, T., Peer, M., Bohara, V. A., da Costa, D. B., & Dias, U. S. (2018). Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Communications, 12(7), 838–847.

    Article  Google Scholar 

  18. Xie, D., Lai, X., Lei, X., & Fan, L. (2018). Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access, 6, 5596–5606.

    Article  Google Scholar 

  19. Yan, Z., Chen, S., Zhang, X., & Liu, H.-L. (2018). Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet of Things Journal, 5(4), 2691–2699.

    Article  Google Scholar 

  20. Nhat, T. T. , Duy, T. T., & Bao, V. N. Q. (2018). Performance evaluation of cooperative relay networks with one full-energy relay and one energy harvesting relay. In 2018 2nd International conference on recent advances in signal processing. telecommunications and computing (SigTelCom) (pp. 7–12).

  21. Vo, V., Nhan, N., Gia, T., So-In, C., Baig, Z. A., & Sanguanpong, S. (2018). Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy. IEEE Access, 6, 23406–23419.

    Article  Google Scholar 

  22. Behdad, Z., Mahdavi, M., & Razmi, N. (2018). A new relay policy in RF energy harvesting for IoT networks-a cooperative network approach. IEEE Internet of Things Journal, 5(4), 2715–2728.

    Article  Google Scholar 

  23. Yao, R., Lu, Y., Tsiftsis, T. A., Qi, N., Mekkawy, T., & Xu, F. (2018). Secrecy rate-optimum energy splitting for an untrusted and energy harvesting relay network. IEEE Access, 6, 19238–19246.

    Article  Google Scholar 

  24. Yin, C., Nguyen, H. T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., & Duong, T. Q. (2018). Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access, 6, 12074–12084.

    Article  Google Scholar 

  25. Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M.-S. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1(2), 192–203.

    Article  Google Scholar 

  26. Varan, B., & Yener, A. (2015). Throughput maximizing games in the two-hop relay channel with energy cooperation. In 49th Annual conference on information sciences and systems (CISS), (pp. 1–6).

  27. Garnaev, A., & Trappe, W. (2018). Fair scheduling of two-hop transmission with energy harvesting. In Y. Zhou & T. Kunz (Eds.), AdHocNets 2017, LNICST (Vol. 223, pp. 189–198). Cham: Springer.

    Google Scholar 

  28. Hasna, M. O., & Alouini, M. S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communication Letters, 7(5), 216–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Proposition 1, CDF of Ratio of Two Exponential r.v.

Let X and Y be two exponential r.v. with respective mean 1/a and 1/b. Let \(Z=\frac{X}{Y}\), we have

$$\begin{aligned} P(Z\le t)=P\left( Y\ge \frac{X}{t}\right) . \end{aligned}$$

Since \(P(Y\ge y)=e^{-by}\), we deduce

$$\begin{aligned} P(Z\le t)=E(e^{-b\frac{X}{t}})=\int _{0}^{+\infty }ae^{-ax}e^{-\frac{bx}{t} }dx=\frac{at}{at+b}. \end{aligned}$$

Appendix 2: Proof of Proposition 2, PDF and CDF of Product of Two Exponential Random Variables

Let \(Y_{1}\) and \(Y_{2}\) be two exponential r.v. with respective mean 1/\(\lambda _{1}\) and 1/\(\lambda _{2}.\)

The CDF of the product of two exponential rv \(Y=Y_{1}Y_{2}\) is given by

$$\begin{aligned} P_{Y}(x)=P(Y_{1}Y_{2}\le x)=\int _{0}^{+\infty }P\left( Y_{1}\le \frac{x}{y} \right) \lambda _{2}e^{-\lambda _{2}y}dy. \end{aligned}$$
(36)

We deduce

$$\begin{aligned} P_{Y}(x)&= \int _{0}^{+\infty }\left[ 1-e^{-\lambda _{1}\frac{x}{y}}\right] \lambda _{2}e^{-\lambda _{2}y}dy \nonumber \\&= 1-\int _{0}^{+\infty }e^{-\lambda _{1}\frac{x}{y}}\lambda _{2}e^{-\lambda _{2}y}dy \end{aligned}$$
(37)

We have

$$\begin{aligned} \int _{0}^{+\infty }e^{-\frac{c}{y}}e^{-\frac{y}{d}}dy=2\sqrt{\frac{c}{d}} K_{1}\left( 2\sqrt{\frac{c}{d}}\right) . \end{aligned}$$
(38)

We use (31) and (32) with \(c=\lambda _{1}x\) and \(d=\frac{1}{ \lambda _{2}}\), we obtain

$$\begin{aligned} P_{Y}(x)=1-2\sqrt{\lambda _{1}\lambda _{2}x}K_{1}(2\sqrt{\lambda _{1}\lambda _{2}x}). \end{aligned}$$
(39)

Taking the derivative of CDF, we obtain the PDF as

$$\begin{aligned} p_{Y}(x)=-\frac{\sqrt{\lambda _{1}\lambda _{2}}}{\sqrt{x}}K_{1}(2\sqrt{ \lambda _{1}\lambda _{2}x})-2\sqrt{\lambda _{1}\lambda _{2}x}K_{1}^{^{\prime }}(2\sqrt{\lambda _{1}\lambda _{2}x})\frac{\sqrt{\lambda _{1}\lambda _{2}}}{ \sqrt{x}}. \end{aligned}$$
(40)

Using

$$\begin{aligned} K_{1}^{\prime}(z)=-\,K_{0}(z)-\frac{K_{1}(z)}{z}, \end{aligned}$$
(41)

we obtain

$$\begin{aligned} p_{Y}(x)=2\lambda _{1}\lambda _{2}K_{0}(2\sqrt{\lambda _{1}\lambda _{2}x}), \end{aligned}$$
(42)

Appendix 3

We have

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(1)}<x\right) =P\left( \frac{Y_{1}}{Y_{2}}< \frac{x}{a}(b+cY_{3})\right) . \end{aligned}$$
(43)

Let \(Y_{4}=\frac{x}{a}(b+cY_{3}),\) we have

$$\begin{aligned} P(Y_{4}<u)=P\left( Y_{3}<\frac{a}{cx}u-\frac{b}{c}\right) =F_{Y_{3}}\left( \frac{a}{cx}u- \frac{b}{c}\right) \end{aligned}$$
(44)

We deduce the Probability Density Function (PDF) of \(Y_{4}\)

$$\begin{aligned} f_{Y_{4}}(u)=\frac{a}{cx}f_{Y_{3}}\left( \frac{a}{cx}u -\frac{b}{c}\right) \end{aligned}$$
(45)

Therefore, we can write

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(1)}<x\right)&= \int _{\frac{bx}{a}}^{+\infty }P \left( \frac{Y_{1}}{Y_{2}}<u\right) \,f_{Y_{4}}(u)du \nonumber \\&= \int _{\frac{bx}{a}}^{+\infty }P\left( \frac{Y_{1}}{Y_{2}}<u\right) \frac{a\lambda _{3}}{cx}e^{-\frac{a\lambda _{3}}{cx}u}e^{\frac{b \lambda _{3}}{c}}du \end{aligned}$$
(46)

where

$$\begin{aligned} \lambda _{i}=\frac{1}{E(Y_{i})} \end{aligned}$$
(47)

Using the results of “Appendix 1”, we can write

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(1)} <x\right)&= \frac{a\lambda _{3}}{cx}e^{\frac{b\lambda _{3}}{ c}}\int _{\frac{bx}{a}}^{+\infty }\frac{\lambda _{1}u}{\lambda _{1}u+\lambda _{2} }e^{-\frac{a\lambda _{3}}{cx}u}du \nonumber \\&= 1-\frac{a\lambda _{3}\lambda _{2}}{cx}e^{\frac{b\lambda _{3}}{c}}\int _{\frac{ bx}{a}}^{+\infty }\frac{1}{\lambda _{1}u+\lambda _{2}}e^{-\frac{a\lambda _{3}}{ cx}u}du \end{aligned}$$
(48)

Let \(v=\lambda _{1}u+\lambda _{2},\) we deduce

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(1)} <x\right)&= 1-\frac{a\lambda _{3}\lambda _{2}}{cx\lambda _{1} }e^{\frac{b\lambda _{3}}{c}}\int _{\frac{b\lambda _{1}x}{a}+\lambda _{2}}^{+\infty }\frac{1}{v}e^{-\frac{a\lambda _{3}}{cx}(\frac{v-\lambda _{2}}{ \lambda _{1}})}dv \nonumber \\&= 1-\frac{a\lambda _{3}\lambda _{2}}{cx\lambda _{1}}e^{\frac{b\lambda _{3}}{c} }E_{i}\left( \left( \frac{b\lambda _{1}x}{a}+\lambda _{2}\right) \frac{a\lambda _{3}}{cx}\right) e^{\frac{ a\lambda _{3}}{cx}\frac{\lambda _{2}}{\lambda _{1}}} \end{aligned}$$
(49)

where \(E_{i}(x)\) is the exponential integral function defined as

$$\begin{aligned} E_{i}(x)=\int _{x}^{+\infty }\frac{e^{-u}}{u}du. \end{aligned}$$
(50)

Appendix 4

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(2)}\le x\right) =P\left( \frac{eY_{1}Y_{5}}{f+Y_{3}}\le x\right) =P\left( Y_{1}Y_{5}\le x\frac{Y_{6}}{e}\right) , \end{aligned}$$
(51)

where

$$\begin{aligned} Y_{6}=f+Y_{3}. \end{aligned}$$
(52)

Since \(Y_{3}\) is exponentially distributed, the PDF of \(Y_{6}\) is expressed as

$$\begin{aligned} f_{Y_{6}}(u)=\lambda _{3}e^{-\lambda _{3}(u-f)},\quad u\ge f \end{aligned}$$
(53)

Therefore, we have

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(2)}\le x\right) =\int _{f}^{+\infty }P\left(Y_{1}Y_{5}\le x\frac{y }{e}\right)f_{Y_{6}}(y)dy, \end{aligned}$$
(54)

Using “Appendix 2”, we have

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(2)} \le x\right)&= \int _{f}^{+\infty }\left[ 1-2\sqrt{\lambda _{1}\lambda _{5}x\frac{y}{e}}K_{1}\left( 2\sqrt{\lambda _{1}\lambda _{5}x\frac{y }{e}}\right) \right] \lambda _{3}e^{-\lambda _{3}(y-f)}dy, \nonumber \\&= 1-\lambda _{3}e^{\lambda _{3}f}2\sqrt{\lambda _{1}\lambda _{5}\frac{x}{e}} \int _{f}^{+\infty }\sqrt{y}K_{1}(2\beta \sqrt{y})e^{-\lambda _{3}y}dy \nonumber \\&= 1-\lambda _{3}e^{\lambda _{3}f}2\sqrt{\lambda _{1}\lambda _{5}\frac{x}{e}} \int _{0}^{+\infty }\sqrt{y}K_{1}(2\beta \sqrt{y})e^{-\lambda _{3}y}dy \nonumber \\&\quad +\,\lambda _{3}e^{\lambda _{3}f}2\sqrt{\lambda _{1}\lambda _{5}\frac{x}{e}} \int _{0}^{f}\sqrt{y}K_{1}(2\beta \sqrt{y})e^{-\lambda _{3}y}dy \end{aligned}$$
(55)

We use the following result

$$\begin{aligned} \int _{0}^{+\infty }\sqrt{y}K_{1}(2\beta \sqrt{y})e^{-\lambda _{3}y}dy=\frac{ e^{\frac{\beta ^{2}}{2\lambda _{3}}}}{2\beta \lambda _{3}}W_{-1,0.5}\left( \frac{ \beta ^{2}}{\lambda _{3}}\right) , \end{aligned}$$
(56)

where \(W_{\mu ,\nu }(x)\) is the Whittaker function.

We finally obtain

$$\begin{aligned} P\left( \gamma _{SR_{1,k}}^{(2)} \le x\right)&= 1-\lambda _{3}e^{\lambda _{3}f}2\sqrt{ \lambda _{1}\lambda _{5}\frac{x}{e}}\frac{e^{\frac{\beta ^{2}}{2\lambda _{3}}}}{ 2\beta \lambda _{3}}W_{-1,0.5}\left( \frac{\beta ^{2}}{\lambda _{3}}\right) \nonumber \\&\quad +\,\lambda _{3}e^{\lambda _{3}f}2\sqrt{\lambda _{1}\lambda _{5}\frac{x}{e}} \int _{0}^{f}\sqrt{y}K_{1}(2\beta \sqrt{y})e^{-\lambda _{3}y}dy. \end{aligned}$$
(57)

where the last term is computed using MATLAB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halima, N.B., Boujemâa, H. Routing with Energy Harvesting and Adaptive Transmit Power for Cognitive Radio Networks. Wireless Pers Commun 110, 257–273 (2020). https://doi.org/10.1007/s11277-019-06725-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06725-z

Keywords

Navigation