Skip to main content
Log in

Bandwidth Enhancement of a Wide Slot Antenna Using Fractal Geometry for UWB Application with Multiple Notched Bands

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper a combination of rectangular and elliptical fractal geometry is applied on a regular hexagonal wide slot antenna fabricated using a FR4 substrate to obtain ultra wide band (UWB) operation. The bandwidth enhancement of the wide slot antenna due to this fractal curve is studied in a step by step manner and the corresponding mathematical analysis is also presented. The comparison of the proposed fractal geometry with the existing fractal geometries is also exhibited. Multiple input multiple output performance of the proposed UWB antenna is also analysed. Two pairs of L-shaped slots are etched on the ground plane and a metallic ring is inserted inside the slot to produce triple band notch characteristics at 3.98 GHz, 5.56 GHz and 7.94 GHz. These three notch bands can avoid interference with existing WIMAX, downlink of C-band satellite communication, WLAN and uplink of X band satellite communication. The proposed band notched UWB antenna exhibits acceptable radiation characteristics with satisfactory gain, high radiation efficiency and constant group delay in the operation band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Federal Communications Commission: Revision of part 15 of the commission’s rule regarding Ultra Wideband Transmission System, First Report and Order FCC02, V48 (2002)

  2. Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45, 38–57.

    Article  Google Scholar 

  3. Naser-Moghadasi, M., Sadeghzadeh, R. A., Sedghi, T., Aribi, T., & Virdee, B. S. (2013). UWB CPW-fed fractal patch antenna with band-notched function employing folded T-shaped element. IEEE Antennas and Wireless Propagation Letters, 12, 504–507.

    Article  Google Scholar 

  4. Fallahi, H., & Atlasbaf, Z. (2013). Study of a class of UWB CPW-fed monopole antenna with fractal elements. IEEE Antennas and Wireless Propagation Letters, 12, 1484–1487.

    Article  Google Scholar 

  5. Choukiker, Y. K., & Behera, S. K. (2014). Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics. IET Microwaves, Antennas and Propagation, 8, 506–512.

    Article  Google Scholar 

  6. Tripathi, S., Mohan, A., & Yadav, S. (2014). Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement. IET Microwaves, Antennas and Propagation, 8, 1445–1450.

    Article  Google Scholar 

  7. Benavides, J. B., Lituma, R. A., Chasi, P. A., & Guerrero, L. F. (2018). A novel modified hexagonal shaped fractal antenna with multi band notch characteristics for UWB applications. In IEEE-APS topical conference on antennas and propagation in wireless communications (APWC), Cartagena des Indias (pp. 830–833).

  8. Kubacki, R., Czyżewski, M., & Laskowski, D. (2018). Microstrip antennas based on fractal geometries for UWB application. In 22nd international microwave and radar conference (MIKON), Poznan (pp. 352–356).

  9. Lituma-Guartan, R. A., Benavides-Aucapiña, J. B., Poveda-Pulla, D. F., Guerrero-Vasquez, L. F. , & Chasi-Pesántez P. A. (2018). A novel modified hexagonal shaped fractal antenna with multi band notch characteristics for UWB applications. In IEEE 10th Latin-American conference on communications (LATINCOM), Guadalajara (pp. 1–5).

  10. Gurjar, R., Upadhyay, D. K., & Kanaujia B. K. (2018). Compact four-element 8-shaped self-affine fractal UWB MIMO antenna. In 3rd international conference on microwave and photonics (ICMAP), Dhanbad (pp. 1–2).

  11. Banerjee, J., Ghatak, R., & Karmakar, A. (2018). A compact planar UWB MIMO diversity antenna with Hilbert fractal neutralization line for isolation improvement and dual band notch characteristics. In Emerging trends in electronic devices and computational techniques (EDCT), Kolkata (pp. 1–2).

  12. Sung, Y. (2012). Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch. IEEE Transactions on Antennas and Propagation, 60, 1712–1716.

    Article  Google Scholar 

  13. Shinde, P. N., & Shinde, J. P. (2015). Design of compact pentagonal slot antenna with bandwidth enhancement for multiband wireless applications. AEU-International Journal of Electronics and Communications, 69, 1489–1494.

    Article  Google Scholar 

  14. Chattopadhyay, K., Mitra, T., Das, D., Das, S., & Chaudhuri, S. R. B. (2013). Bandwidth enhancement of hexagonal wide slot antenna using a tuning stub. IETE Journal of Research, 59, 732–738.

    Article  Google Scholar 

  15. Chen, W.-L., Wang, G.-M., & Zhang, C.-X. (2009). Bandwidth enhancement of a microstrip-line-fed printed wide slot antenna with a fractal shaped slot. IEEE Transactions on Antennas and Propagation, 57, 2176–2179.

    Article  Google Scholar 

  16. Krishna, D. D., Gopikrishna, M., Aanandan, C. K., Mohanan, P., & Vasudevan, K. (2009). Compact wideband Koch fractal printed slot antenna. IET Microwaves, Antennas and Propagation, 3, 782–789.

    Article  Google Scholar 

  17. Eskandari, H., & Azarmanesh, M. N. (2009). Bandwidth enhancement of a printed wide-slot antenna with small slots. AEU-International Journal of Electronics and Communications, 63, 896–900.

    Article  Google Scholar 

  18. Zhang, H., Xu, H.-Y., Tian, B., & Zeng, X.-F. (2012). CPW-fed fractal slot antenna for UWB application. International Journal of Antennas and Propagation, 4 pages.

  19. Roy, B., Bhattacharya, A., Chowdhury, S. K., & Bhattacharjee, A. K. (2016). Wideband Snowflake slot antenna using Koch Iteration technique for wireless and C-band applications. AEU-International Journal of Electronics and Communications, 70, 1467–1472.

    Article  Google Scholar 

  20. Song, K., Yin, Y.-Z., Wu, X.-B., & Zhang, L. (2010). Bandwidth enhancement of open slot antenna with a T-shaped Stub. Microwave and Optical Technology Letters, 52, 390–393.

    Article  Google Scholar 

  21. Yang, Y., Yin, Y.-Z., Wei, Y.-Q., Liu, B.-W., & Sun, A.-F. (2011). A circular wide slot antenna with dual band notched characteristics for UWB applications. Progress in Electromagnetics Research Letters, 23, 137–145.

    Article  Google Scholar 

  22. Li, C. M., & Ye, L. H. (2011). Improved dual band notched UWB slot antenna with controllable notched bandwidths. Progress in Electromagnetics Research, 115, 477–493.

    Article  Google Scholar 

  23. Naser-Moghadasi, M., Asadpor, L., & Virdee, B. S. (2012). Compact ultrawideband slot antenna with band-notch property. Microwave and Optical Technology Letters, 54, 1829–1832.

    Article  Google Scholar 

  24. Li, Y., Yang, X., Liu, C., & Jiang, T. (2012). Miniaturization cantor set fractal ultrawideband antenna with a notch band characteristic. Microwave and Optical Technology Letters, 54, 1227–1230.

    Article  Google Scholar 

  25. Zeng, W., Zhao, J., & Wu, Q. (2012). Compact planar ultrawideband wide slot antenna with an assembled band-notched structure. Microwave and Optical Technology Letters, 54, 1654–1659.

    Article  Google Scholar 

  26. Gao, P., Xiong, L., Dai, J., He, S., & Zheng, Y. (2013). Compact printed wide slot UWB antenna with 3.5/5.5-GHz dual band notched characteristics. IEEE Antennas and Wireless Propagation Letters, 12, 983–986.

    Article  Google Scholar 

  27. Chattopadhyay, K., Das, S., Das, S., & Chaudhuri, S. R. B. (2013). Ultrawideband performance of printed hexagonal wideslot antenna with dual band-notched characteristics. Progress in Electromagnetics Research C, 44, 83–93.

    Article  Google Scholar 

  28. Shrivastava, M. K., Gautam, A. K., & Kanaujia, B. K. (2014). A novel A-shaped monopole like slot antenna for ultrawideband applications. Microwave and Optical Technology Letters, 56, 1826–1829.

    Article  Google Scholar 

  29. Zhang, Y.-P., & Li, C.-M. (2015). Design of small dual band-notched UWB slot antenna. Electronic Letters, 51, 1727–1728.

    Article  Google Scholar 

  30. Mazloum, J., Parchin, N. O., & Ojaroudi, S. (2016). Bandwidth enhancement of small slot antenna with a variable band-stop function. Wireless Personal Communications, 102, 355–368.

    Google Scholar 

  31. Srivastava, G., & Mohan, A. (2016). Compact MIMO slot antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 15, 1057–1060.

    Article  MathSciNet  Google Scholar 

  32. Soleimani, H., & Orazi, H. (2017). Miniaturization of UWB triangular slot antenna by the use of DRAF. IET Microwaves, Antennas and Propagation, 11, 450–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Chattopadhyay, K. & Bhadra Chaudhuri, S.R. Bandwidth Enhancement of a Wide Slot Antenna Using Fractal Geometry for UWB Application with Multiple Notched Bands. Wireless Pers Commun 110, 677–698 (2020). https://doi.org/10.1007/s11277-019-06749-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06749-5

Keywords

Navigation