Skip to main content
Log in

Modified Spatial Modulation and Low Complexity Signal Vector Based Minimum Mean Square Error Detection for MIMO Systems under Spatially Correlated Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spatial Modulation (SM) is an innovative digital modulation scheme, which is expected to be a competitive candidate for next generation networks. All the variants of SM exhibit poor performance under spatial correlation and line of sight (LOS) Rician channel conditions. To combat the adverse effects of spatial correlation, a new variant of SM designated as modified spatial modulation (MSM) is proposed for 8 × 8 multiple input multiple output configuration. MSM uses a unique and dynamic mapping, which activates either one antenna or two antennas at the transmitter. Optimum maximum likelihood (ML) detection at the receiver though give accurate results but leads to high computational complexity as it performs extensive search of all possible antennas and symbols. In order to reduce the computational complexity, signal vector based minimum mean square error (SVMMSE) detection scheme is employed for MSM scheme. Estimation of antenna indices and transmitted symbols is done for both single antenna active and double antenna active scenarios. Performance of SVMMSE detection scheme is also analyzed under spatial correlation and LOS Rician channel conditions. The promising performance of SVMMSE under spatially uncorrelated Rayleigh, Spatial correlation and LOS Rician channel conditions with low computational complexity justifies the suitability of the proposed scheme for 5G based compact battery driven wireless devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agiwal, M., Saxena, N., & Roy, A. (2018). Ten commandments of emerging 5G networks. Wireless Personal Communications,98(3), 2591–2621.

    Article  Google Scholar 

  2. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.

    Article  Google Scholar 

  3. Rappaport, T. S., Roh, W., & Cheun, K. (2014). Wireless engineers long considered high frequencies worthless for cellular systems: They couldn’t be more wrong. IEEE Spectrum,51(9), 34–58.

    Article  Google Scholar 

  4. Akyildiz, I. F., Nie, S., Lin, S. C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks,106, 17–48.

    Article  Google Scholar 

  5. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication,18, 64–84.

    Article  Google Scholar 

  6. Ericsson, L. (2011). More than 50 billion connected devices. White Paper,14, 124.

    Google Scholar 

  7. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications,11(9), 3590–3600.

    Article  Google Scholar 

  8. Prasad, R. (2014). 5G: 2020 and beyond. River Publishers series in communication. Singapore: River Publishers.

    Google Scholar 

  9. Agiwal, M., Saxena, N., & Roy, A. (2018). Mobile assisted directional paging for 5G communications. Transactions on Emerging Telecommunications Technologies,29(2), e3270.

    Article  Google Scholar 

  10. DoCoMo, N. T. T. (2016). New SID proposal: Study on new radio access technology. 3GPP RP, 160671.

  11. Basar, E., Wen, M., Mesleh, R., Di Renzo, M., Xiao, Y., & Haas, H. (2017). Index modulation techniques for next-generation wireless networks. IEEE Access,5, 16693–16746.

    Article  Google Scholar 

  12. Mesleh, R. Y. (2007). Spatial modulation: A spatial multiplexing technique for efficient wireless data transmission (Doctoral dissertation, Jacobs University, Bremen).

  13. Simha, G. G., Koila, S., Neha, N., Raghavendra, M. A. N. S., & Sripati, U. (2017). Redesigned spatial modulation for spatially correlated fading channels. Wireless Personal Communications,97(4), 5003–5030.

    Article  Google Scholar 

  14. Naidu, S., Pillay, N., & Xu, H. (2018). Transmit antenna selection schemes for quadrature spatial modulation. Wireless Personal Communications,99(1), 299–317.

    Article  Google Scholar 

  15. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters,12(8), 545–547.

    Article  Google Scholar 

  16. Serafimovski, N., Di Renzo, M., Sinanovic, S., Mesleh, R. Y., & Haas, H. (2010). Fractional bit encoded spatial modulation (FBE-SM). IEEE Communications Letters,14(5), 429–431.

    Article  Google Scholar 

  17. Younis, A., Serafimovski, N., Mesleh, R., & Haas, H. (2010). Generalised spatial modulation. In Proceedings of 44th Asilomar conference on signals, systems and computers (ASILOMAR), (pp. 1498-1502).

  18. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology,64(6), 2738–2742.

    Article  Google Scholar 

  19. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2017). Quadrature spatial modulation–performance analysis and impact of imperfect channel knowledge. Transactions on Emerging Telecommunications Technologies,28(1), e2905.

    Article  Google Scholar 

  20. Younis, A. (2014). Spatial modulation: Theory to practice. Edinburgh: University of Edinburgh.

    Google Scholar 

  21. Luna-Rivera, J. M., & Gonzalez-Perez, M. G. (2012). An improved spatial modulation scheme for MIMO channels. In Proceedings of 6th European conference on antennas and propagation (EUCAP) (pp. 1–5).

  22. Cheng, C. C., Sari, H., Sezginer, S., & Su, Y. T. (2014). Enhanced spatial modulation with multiple constellations. In Proceedings of IEEE international black sea conference on communications and networking (BlackSeaCom) (pp. 1–5).

  23. Cheng, C. C., Sari, H., Sezginer, S., & Su, Y. T. (2015). Enhanced spatial modulation with multiple signal constellations. IEEE Transactions on Communications,63(6), 2237–2248.

    Article  Google Scholar 

  24. Mesleh, R., Hiari, O., & Younis, A. (2018). Generalized space modulation techniques: Hardware design and considerations. Physical Communication,26, 87–95.

    Article  Google Scholar 

  25. Mesleh, R., Di Renzo, M., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communications,9(7), 2349–2361.

    Article  Google Scholar 

  26. Xiao, Y., Yang, Z., Dan, L., Yang, P., Yin, L., & Xiang, W. (2014). Low-complexity signal detection for generalized spatial modulation. IEEE Communications Letters,18(3), 403–406.

    Article  Google Scholar 

  27. Younis, A., Di Renzo, M., Mesleh, R., & Haas, H. (2011). Sphere decoding for spatial modulation. In Proceedings of 2011 IEEE international conference on communications (ICC) (pp. 1–6).

  28. Baraniuk, R. G. (2007). Compressive sensing (lecture notes). IEEE Signal Processing Magazine,24(4), 118–121.

    Article  Google Scholar 

  29. Glover, F., & Laguna, M. (2013) Tabu search. In Handbook of combinatorial optimization (pp. 3261–3362). Springer New York.

  30. Del Moral, P., Doucet, A., & Jasra, A. (2012). An adaptive sequential Monte Carlo method for approximate Bayesian computation. Statistics and Computing,22(5), 1009–1020.

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Jia, S., & Song, J. (2012). Signal vector based detection scheme for spatial modulation. IEEE Communications Letters,16(1), 19–21.

    Article  Google Scholar 

  32. Zheng, J. (2012). Signal vector based list detection for spatial modulation. IEEE Wireless Communications Letters,1(4), 265–267.

    Article  Google Scholar 

  33. Zhang, W., & Yin, Q. (2014). Adaptive signal vector based detection for spatial modulation. IEEE Communications Letters,18(11), 2059–2062.

    Article  Google Scholar 

  34. Younis, A., Sinanovic, S., Di Renzo, M., Mesleh, R., & Haas, H. (2013). Generalised sphere decoding for spatial modulation. IEEE Transactions on Communications,61(7), 2805–2815.

    Article  Google Scholar 

  35. Serafimovski, N., Younis, A., Mesleh, R., Chambers, P., Di Renzo, M., Wang, C. X., et al. (2013). Practical implementation of spatial modulation. IEEE Transactions on Vehicular Technology,62(9), 4511–4523.

    Article  Google Scholar 

  36. Li, J., Jiang, X., Yan, Y., Yu, W., Song, S., & Lee, M. H. (2017). Low complexity detection for quadrature spatial modulation systems. Wireless Personal Communications,95(4), 4171–4183.

    Article  Google Scholar 

  37. Xiangbin, Y., Qing, P., Yang, L., Yaping, H., & Tao, L. (2018). Adaptive spatial modulation and thresholds optimization for MIMO systems in correlated Rayleigh channels. International Journal of Electronics and Communications,89, 167–173.

    Article  Google Scholar 

  38. Quitin, F., Oestges, C., Horlin, F., & De Doncker, P. (2010). A polarized clustered channel model for indoor multiantenna systems at 3.6 GHz. IEEE Transactions on Vehicular Technology,59(8), 3685–3693.

    Article  Google Scholar 

  39. Oestges, C. (2006). Validity of the Kronecker model for MIMO correlated channels. In Proceedings of 63rd IEEE vehicular technology conference (VTC), 6 (pp. 2818–2822).

  40. Jagannatham, A. K. (2015). Principles of modern wireless communication systems. New York: McGraw-Hill Education.

    Google Scholar 

  41. Liu, X., & Wesel, R. D. (1998). Profile optimal 8-QAM and 32-QAM constellations. In Thirty-sixth annual allerton conference on communications, control, and computing.

  42. Wang, F., Xiong, Y., & Yang, X. (2007). Approximate ML detection based on MMSE for MIMO systems. Progress in Electromagnetics Research Symposium (PIERS) Online,4(3), 475–480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthi Murugadass.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, G., Gudla, V.V., Kumaravelu, V.B. et al. Modified Spatial Modulation and Low Complexity Signal Vector Based Minimum Mean Square Error Detection for MIMO Systems under Spatially Correlated Channels. Wireless Pers Commun 110, 999–1020 (2020). https://doi.org/10.1007/s11277-019-06770-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06770-8

Keywords

Navigation