Skip to main content

Advertisement

Log in

An Overview of Internet of Dental Things: New Frontier in Advanced Dentistry

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Internet of Medical Things (IoMT) has revolutionized health care sector drastically since last decade. Recent advances in digital world have helped to achieve prevention and management of chronic diseases by the IoMT technology based devices in medical field. Advanced science, cloud technology, and new generations of smart-phones, plus tablets with integrated apps have helped patients to track their diseases continuously on daily basis. Dentistry has also transformed completely due to establishment of computer-based advanced technologies, new preventive disease measures, and improved diagnostic techniques in last few years. Internet of Dental Things (IoDT) is an innovative approach to achieve prevention and management of dental caries, periodontal diseases, oral cancers, and other dental diseases. IoDT could play vital role in collection and monitoring of patients’ data for oral health care; moreover this data could be used in eventual risk assessment and further research. This paper reviews IoMT and its possible application IoDT in dentistry; additionally it also introduces IoDT technology dependent oral heath-care model and architecture applied to dentistry. In addition, it also reviews data collection devices used with reference to IoDT technology. Thus the overview compiles recent studies on arising digital progressions in dentistry and recommends IoDT as the futuristic advent in the advanced clinical dentistry. To conclude, IoDT will influence positively clinical monitoring, and oral-health data collection; furthermore IoDT will also improve overall management of oral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ibarra-Esquer, J. E., González-Navarro, F. F., Flores-Rios, B. L., Burtseva, L., Astorga-Vargas, M. A., et al. (2017). Tracking the evolution of the internet of things concept across different application domains. Sensors (Basel),17(6), 1379. https://doi.org/10.3390/s17061379.

    Article  Google Scholar 

  2. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M., et al. (2014). Internet of things for smart cities. IEEE Internet Things Journal,1(1), 22–32.

    Article  Google Scholar 

  3. Alkhatib, H., Faraboschi, P., Frachtenberg, E., Kasahara, H., Lange, D., Laplante, P., et al. (2015). IEEE CS 2022 Report, IEEE Computer Society; Washington, DC, USA: 2014. Computer 48(3):68–76

  4. Dimitrov, D. V. (2016). Medical Internet of Things and big data in healthcare. Healthcare Informatics Research,22(3), 156–163. https://doi.org/10.4258/hir.2016.22.3.156.

    Article  Google Scholar 

  5. Bauer, H., Patel, M., Veira, J., et al. (2016). The Internet of Things: Sizing up the opportunity. [Internet], New York, NY: McKinsey & Company; c2016 [cited at 2016 Jul 1]. Resource document: http://www.mckinsey.com/industries/hightechour-insights/the-internet-of-things-sizing-up-theopportunity.

  6. Dym, H., Ogle, O. E., et al. (2011). Technological advances in dentistry and oral surgery Preface. Dental Clinics of North America,55(3), 8–14. https://doi.org/10.1016/j.cden.2011.04.001.

    Article  Google Scholar 

  7. Vaderhobli, R. M. (2011). Advances in dental materials. Dental Clinics of North America.,55(3), 619–625. https://doi.org/10.1016/j.cden.2011.02.015. (Epub 2011 Apr 13. Review).

    Article  Google Scholar 

  8. McDonald, A. (2001). Advances in operative dentistry and fixed prosthodontics. Primary Dental Care,8(1), 13–16.

    Article  Google Scholar 

  9. Konstantinidis, E. I., Bamparopoulos, G., Billis, A., Bamidis, P. D., et al. (2015). Internet of things for an age-friendly healthcare. Studies in Health Technology and Informatics,210, 587–591.

    Google Scholar 

  10. Kutsch, V. K. (2014). Dental caries: an updated medical model of risk assessment. Journal of Prosthetic Dentistry,111(4), 280–285. https://doi.org/10.1016/j.prosdent.2013.07.014. Epub 2013 Dec 10.

    Article  Google Scholar 

  11. Marsh, P. D. (2010). Microbiology of dental plaque biofilms and their role in oral health and caries. Dental Clinics of North America,54(3), 441–454. https://doi.org/10.1016/j.cden.2010.03.002.

    Article  Google Scholar 

  12. Van Dyke, T. E. (2017). Pro-resolving mediators in the regulation of periodontal disease. Molecular Aspects of Medicine,58, 21–36. https://doi.org/10.1016/j.mam.2017.04.006. Epub 2017 May 18.

    Article  Google Scholar 

  13. Chapple, I. L., Bouchard, P., Cagetti, M. G., Campus, G., Carra, M. C., Cocco, F., et al. (2017). Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. Journal of Clinical Periodontology,44(Suppl 18), S39–S51. https://doi.org/10.1111/jcpe.12685.

    Article  Google Scholar 

  14. Vigneswaran, N., Williams, MD., et al. (2014). Epidemiological Trends in Head and Neck Cancer and Aids in Diagnosis. Oral and Maxillofacial Surgery Clinics of North America Author manuscript; available in PMC 2015 May 1. Published in final edited form as: Oral and Maxillofacial Surgery Clinics of North America. 26(2), 123–141. https://doi.org/10.1016/j.coms.2014.01.001.

    Article  Google Scholar 

  15. Ghantous, Y., Yaffi, V., Abu-Elnaaj, I., et al. (2015). [Oral cavity cancer: Epidemiology and early diagnosis]. Refuat Hapeh Vehashinayim (1993). 32(3), 55–63, 71

  16. Saleh, A., Kong, Y. H., Vengu, N., Badrudeen, H., Zain, R. B., Cheong, S. C., et al. (2014). Dentists’ perception of the role they play in early detection of oral cancer. Asian Pacific Journal of Cancer Prevention,15(1), 229–237.

    Article  Google Scholar 

  17. Kitchenham, B., Charters, S., et al. (2007). Guidelines for performing systematic literature reviews in software engineering. Cs.auckland.ac.nz. https://www.cs.auckland.ac.nz/~norsaremah/2007%20Guidelines%20for%20performing%20SLR%20in%20SE%20v2.3.pdf

  18. Petticrew, M., Roberts, H., et al. (2006). Systematic reviews in the social sciences: A practical guide. Malden, MA: Blackwell Publishing.

    Book  Google Scholar 

  19. Jevremović, D. P., Puškar, T. M., Budak, I., Vukelić, D., Kojić, V., Eggbeer, D., et al. (2012). An RE/RM approach to the design and manufacture of removable partial dentures with a biocompatibility analysis of the F75 Co-Cr SLM alloy. Materiali in Tehnologije,46(2), 123–129.

    Google Scholar 

  20. Beuer, F., Schweiger, J., Edelhoff, D., et al. (2008). Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. British Dental Journal,204(9), 505–511. https://doi.org/10.1038/sj.bdj.2008.350.

    Article  Google Scholar 

  21. Azari, A., Nikzad, S., et al. (2009). The evolution of rapid prototyping in dentistry: A review. Rapid Prototyping Journal,15(3), 216–225. https://doi.org/10.1108/13552540910961946.

    Article  Google Scholar 

  22. Dawood, A., Marti Marti, B., Sauret-Jackson, V., Darwood, A., et al. (2015). 3D printing in dentistry. British Dental Journal,219(11), 521–529. https://doi.org/10.1038/sj.bdj.2015.914.

    Article  Google Scholar 

  23. Nasseh, I., Al-Rawi, W., et al. (2018). Cone beam computed tomography. Dental Clinics of North America,62(3), 361–391. https://doi.org/10.1016/j.cden.2018.03.002.

    Article  Google Scholar 

  24. Pauwels, R., Araki, K., Siewerdsen, J. H., Thongvigitmanee, S. S., et al. (2015). Technical aspects of dental CBCT: State of the art. Dentomaxillofac Radiol.,44(1), 20140224. https://doi.org/10.1259/dmfr.20140224.

    Article  Google Scholar 

  25. Pynadath, G. (2016). Implant dentistry: Understanding CBCTs. British Dental Journal,220(5), 218. https://doi.org/10.1038/sj.bdj.2016.152.

    Article  Google Scholar 

  26. Patel, S., Durack, C., Abella, F., Shemesh, H., Roig, M., Lemberg, K., et al. (2015). Cone beam computed tomography in endodontics—A review. International Endodontic Journal,48(1), 3–15. https://doi.org/10.1111/iej.12270. (Epub 2014 Apr 2).

    Article  Google Scholar 

  27. Carter, J. B., Stone, J. D., Clark, R. S., Mercer, J. E., et al. (2016). Applications of cone-beam computed tomography in oral and maxillofacial surgery: An overview of published indications and clinical usage in united states academic centers and oral and maxillofacial surgery practices. Journal of Oral and Maxillofacial Surgery,74(4), 668–679. https://doi.org/10.1016/j.joms.2015.10.018. (Epub 2015 Nov 11).

    Article  Google Scholar 

  28. Kapila, S. D., Nervina, J. M., et al. (2015). CBCT in orthodontics: Assessment of treatment outcomes and indications for its use. Dentomaxillofacial Radiology,44(1), 20140282. https://doi.org/10.1259/dmfr.20140282.

    Article  Google Scholar 

  29. Garib, D. G., Calil, L. R., Leal, C. R., Janson, G., et al. (2014). Is there a consensus for CBCT use in Orthodontics? Dental Press Journal of Orthodontics.,19(5), 136–149. https://doi.org/10.1590/2176-9451.19.5.136-149.sar.

    Article  Google Scholar 

  30. Woelber, J. P., Fleiner, J., Rau, J., Ratka-Krüger, P., Hannig, C., et al. (2018). Accuracy and usefulness of CBCT in periodontology: A systematic review of the literature. International Journal of Periodontics & Restorative Dentistry.,38(2), 289–297. https://doi.org/10.11607/prd.2751.

    Article  Google Scholar 

  31. Scarfe, W. C., Farman, A. G., Sukovic, P., et al. (2006). Clinical applications of cone-beam computed tomography in dental practice. Journal/Canadian Dental Association. Journal de l’Association Dentaire Canadienne,72(1), 75–80.

    Google Scholar 

  32. Abramovicz-Finkelsztain, R., Barsottini, C. G., Marin, H. F., et al. (2015). Electronic dental records system adoption. Stud Health Technol Inform.,2015(216), 17–20.

    Google Scholar 

  33. Schleyer, T., Song, M., Gilbert, G. H., Rindal, D. B., Fellows, J. L., Gordan, V. V., et al. (2013). Electronic dental record use and clinical information management patterns among practitioner-investigators in The Dental Practice-Based Research Network. Journal of the American Dental Association,144(1), 49–58.

    Article  Google Scholar 

  34. Makdissi, J., Pawar, R., et al. (2013). Digital radiography in the dental practice: an update. Primary Dental Journal,2(1), 58–64.

    Article  Google Scholar 

  35. Alexander, S. (2016). Image acquisition and quality in digital radiography. Radiologic Technology,88(1), 53–66.

    Google Scholar 

  36. Ahlholm, P., Sipilä, K., Vallittu, P., Jakonen, M., Kotiranta, U., et al. (2018). Digital versus conventional impressions in fixed prosthodontics: A review. Journal of Prosthodontics,27(1), 35–41. https://doi.org/10.1111/jopr.12527. Epub 2016 Aug 2.

    Article  Google Scholar 

  37. Pirjamalineisiani, A., Sarafbidabad, M., Jamshidi, N., Esfahani, F. A., et al. (2017). Finite element analysis of post dental implant fixation in drilled mandible sites. Computers in Biology and Medicine,81, 159–166. https://doi.org/10.1016/j.compbiomed.2016.11.012.

    Article  Google Scholar 

  38. Fujii, H., Kuroyanagi, N., Kanazawa, T., Yamamoto, S., Miyachi, H., Shimozato, K., et al. (2017). Three-dimensional finite element model to predict patterns of pterygomaxillary dysjunction during Le Fort I osteotomy. International Journal Oral Maxillofacial Surgery.,46(5), 564–571. https://doi.org/10.1016/j.ijom.2016.12.009. (Epub 2017 Jan 12).

    Article  Google Scholar 

  39. Albuha Al-Mussawi, R. M., Farid, F., et al. (2016). Computer-based technologies in dentistry: Types and applications. Journal of Dentistry (Tehran).,13(3), 215–222.

    Google Scholar 

  40. Perry, S., Bridges, S. M., Zhu, F., Leung, W. K., Burrow, M. F., Poolton, J., et al. (2017). Getting to the root of fine motor skill performance in dentistry: Brain activity during dental tasks in a virtual reality haptic simulation. Journal of Medical Internet Research,19(12), e371. https://doi.org/10.2196/jmir.8046.

    Article  Google Scholar 

  41. Botella, C., Fernández-Álvarez, J., Guillén, V., García-Palacios, A., Baños, R., et al. (2017). Recent progress in virtual reality exposure therapy for phobias: A systematic review. Current Psychiatry Reports,19(7), 42. https://doi.org/10.1007/s11920-017-0788-4.

    Article  Google Scholar 

  42. Schultheis, M. T., Himelstein, J., Rizzo, A. A., et al. (2002). Virtual reality and neuropsychology: Upgrading the current tools. J Head Trauma Rehabilitation,17(5), 378–394.

    Article  Google Scholar 

  43. Dunn, J., Yeo, E., Moghaddampour, P., Chau, B., Humbert, S., et al. (2017). Virtual and augmented reality in the treatment of phantom limb pain: A literature review. NeuroRehabilitation,40(4), 595–601. https://doi.org/10.3233/nre-171447.

    Article  Google Scholar 

  44. Arane, K., Behboudi, A., Goldman, R. D., et al. (2017). Virtual reality for pain and anxiety management in children. Canadian Family Physician,63(12), 932–934.

    Google Scholar 

  45. Bernardo, A. (2017). Virtual reality and simulation in neurosurgical training. World Neurosurgery,106, 1015–1029. https://doi.org/10.1016/j.wneu.2017.06.140.

    Article  Google Scholar 

  46. Roy, E., Bakr, M. M., George, R., et al. (2017). The need for virtual reality simulators in dental education: A review. Saudi Dental Journal,29(2), 41–47. https://doi.org/10.1016/j.sdentj.2017.02.001.

    Article  Google Scholar 

  47. Serrano, C. M., Wesselink, P. R., Vervoorn, J. M., et al. (2018). Real patients in virtual reality: The link between phantom heads and clinical dentistry. Nederlands Tijdschrift voor Tandheelkunde,125(5), 263–267. https://doi.org/10.5177/ntvt.2018.05.17192.

    Article  Google Scholar 

  48. Virtual reality in dentistryVirtual reality society. (2017). https://www.vrs.org.uk/virtual-reality-healthcare/dentistry.html

  49. Kwon, H. B., Park, Y. S., Han, J. S., et al. (2018). Augmented reality in dentistry: A current perspective. Acta Odontologica Scandinavica,76(7), 497–503. https://doi.org/10.1080/00016357.2018.1441437. (Epub 2018 Feb 21).

    Article  Google Scholar 

  50. Llena, C., Folguera, S., Forner, L., Rodríguez-Lozano, F. J., et al. (2018). Implementation of augmented reality in operative dentistry learning. European Journal of Dental Education,22(1), e122–e130. https://doi.org/10.1111/eje.12269. (Epub 2017 Mar 31).

    Article  Google Scholar 

  51. Jampani, N. D., Nutalapati, R., Dontula, B. S. K., Boyapati, R., et al. (2011). Applications of teledentistry: A literature review and update. Journal of International Society of Preventive and Community Dentistry,1(2), 37–44. https://doi.org/10.4103/2F2231-0762.97695.

    Article  Google Scholar 

  52. Queyroux, A., Saricassapian, B., Herzog, D., Müller, K., Herafa, I., Ducoux, D., et al. (2017). Accuracy of teledentistry for diagnosing dental pathology using direct examination as a gold standard: Results of the Tel-e-dent study of older adults living in nursing homes. Journal of the American Medical Directors Association,18(6), 528–532. https://doi.org/10.1016/j.jamda.2016.12.082. (Epub 2017 Feb 22).

    Article  Google Scholar 

  53. Tynan, A., Deeth, L., McKenzie, D., et al. (2018). An integrated oral health program for rural residential aged care facilities: A mixed methods comparative study. BMC Health Serv Res.,18(1), 515. https://doi.org/10.1186/s12913-018-3321-5.

    Article  Google Scholar 

  54. Duka, M., Mihailović, B., Miladinović, M., Janković, A., Vujicić, B., et al. (2009). Evaluation of telemedicine systems for impacted third molars diagnosis. Vojnosanitetski Pregled,66(12), 985–991.

    Article  Google Scholar 

  55. Estai, M., Bunt, S., Kanagasingam, Y., Kruger, E., Tennant, M., et al. (2016). Diagnostic accuracy of teledentistry in the detection of dental caries: A systematic review. The Journal of Evidence-Based Dental Practice,16(3), 161–172. https://doi.org/10.1016/j.jebdp.2016.08.003. (Epub 2016 Sep 7).

    Article  Google Scholar 

  56. Irving, M., Stewart, R., Spallek, H., Blinkhorn, A., et al. (2018). Using teledentistry in clinical practice as an enabler to improve access to clinical care: A qualitative systematic review. Journal of Telemedicine and Telecare,24(3), 129–146. https://doi.org/10.1177/1357633X16686776. Epub 2017 Jan 16.

    Article  Google Scholar 

  57. Meinert, E., Van Velthoven, M., Brindley, D., Alturkistani, A., Foley, K., Rees, S., et al. (2018). The Internet of things in health care in Oxford: Protocol for proof-of-concept projects. JMIR Research Protocols,7(12), e12077. https://doi.org/10.2196/12077.

    Article  Google Scholar 

  58. Bhalerao, D. M. (2014). Internet of things heterogeneous interoperable network architecture design: Peer reviewed version. Publication from Aalborg University, publication date 2014.

  59. Brouard, B. (2017). Chapter 2. Internet of Things help to collect Big Data. Journal International de Bioethique Science.,28(3), 27–30. https://doi.org/10.3917/jib.283.0027.

    Article  Google Scholar 

  60. Haghi, M., Thurow, K., Stoll, R., et al. (2017). Wearable devices in medical Internet of Things: Scientific research and commercially available devices. Healthcare Informatics Research, 23(1), 4–15. https://doi.org/10.4258/hir.2017.23.1.4 pISSN 2093-3681. eISSN 2093-369X.

    Article  Google Scholar 

  61. FTC Staff Report. (2015, January). Internet of Things Privacy & Security in a Connected World. https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf

  62. Trček, D. (2016). Wireless sensors grouping proofs for medical care and ambient assisted-living deployment. Sensors (Basel).,16(1), 33. https://doi.org/10.3390/s16010033.

    Article  Google Scholar 

  63. Gao, W., Emaminejad, S., Nyein, H. Y., Challa, S., Chen, K., Peck, A., et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature,529(7587), 509–514. https://doi.org/10.1038/nature16521.

    Article  Google Scholar 

  64. Lopez-Barbosa, N., Gamarra, J. D., Osma, J. F., et al. (2016). The future point-of-care detection of disease and its data capture and handling. Analytical and Bioanalytical Chemistry,408(11), 2827–2837. https://doi.org/10.1007/s00216-015-9249-2. Epub 2016 Jan 15.

    Article  Google Scholar 

  65. Deng, Y. Y., Chen, C. L., Tsaur, W. J., Tang, Y. W., Chen, J. H., et al. (2017). Internet of Things (IoT) based design of a secure and lightweight body area network (BAN) healthcare system. Sensors (Basel),17(12), E2919. https://doi.org/10.3390/s17122919.

    Article  Google Scholar 

  66. Mihovska, A. D., Prasad, R., Pejanovic, M., et al. (2017). Human‐Centric IoT Networks. Human-Bond Communication: The holy grail of holistic communication and immersive experience. red./Sudhir Dixit; Ramjee Prasad. New York: Wiley, s. 71–86 0002906860.INDD.

  67. Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A., Arias, A. C., et al. (2016). Monitoring of vital signs with flexible and wearable medical devices. Advanced Materials,28(22), 4373–4395. https://doi.org/10.1002/adma.201504366. (Epub 2016 Feb 12).

    Article  Google Scholar 

  68. Rohokale, V. M., Prasad, N. R., Prasad, R., et al. (2011). A Cooperative Internet of Things (IoT) for Rural Healthcare Monitoring and Control. In Proceedings of Wireless Vitae 2011, 2nd international conference on wireless communications, vehicular technology, information theory and aerospace AMD electronic systems technology. Chennai: River Publishers, Le Royal Meridien Chennai, February 28, 2011.

  69. Basatneh, R., Najafi, B., Armstrong, D. G., et al. (2018). Health sensors, smart home devices, and the internet of medical things: An opportunity for dramatic improvement in care for the lower extremity complications of diabetes. Journal of Diabetes Science and Technology,12(3), 577–586. https://doi.org/10.1177/1932296818768618. (Epub 2018 Apr 11).

    Article  Google Scholar 

  70. Pasluosta, C. F., Gassner, H., Winkler, J., Klucken, J., Eskofier, B. M., et al. (2015). An emerging era in the management of Parkinson’s disease: Wearable technologies and the internet of things. IEEE Journal of Biomedical and Health Informatics,19(6), 1873–1881. https://doi.org/10.1109/jbhi.2015.2461555.

    Article  Google Scholar 

  71. Rovini, E., Maremmani, C., Cavallo, F., et al. (2018). Automated systems based on wearable sensors for the management of Parkinson’s disease at home: A systematic review. Telemed J E-Health. https://doi.org/10.1089/tmj.2018.0035.

    Article  Google Scholar 

  72. Ushimaru, Y., Takahashi, T., Souma, Y., Yanagimoto, Y., Nagase, H., Tanaka, K., et al. (2019). Innovation in surgery/operating room driven by Internet of Things on medical devices. Surgical Endoscopy. https://doi.org/10.1007/s00464-018-06651-4.

    Article  Google Scholar 

  73. Naranjo-Hernández, D., Talaminos-Barroso, A., Reina-Tosina, J., Roa, L. M., Barbarov-Rostan, G., Cejudo-Ramos, P., et al. (2018). Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing. Sensors (Basel). https://doi.org/10.3390/s18072144.

    Article  Google Scholar 

  74. Edoh, T. (2018). Risk prevention of spreading emerging infectious diseases using a hybrid crowd sensing paradigm, optical sensors, and smartphone. Journal of Medical Systems,42(5), 91. https://doi.org/10.1007/s10916-018-0937-2.

    Article  Google Scholar 

  75. Vallati, C., Virdis, A., Gesi, M., Carbonaro, N., Tognetti, A., et al. (2018). ePhysio: A wearables-enabled platform for the remote management of musculoskeletal diseases. Sensors (Basel),19(1), E2. https://doi.org/10.3390/s19010002.

    Article  Google Scholar 

  76. Yu, B., Nagarajan, V. K., Ferris, D. G., et al. (2015). Mobile fiber-optic sensor for detection of oral and cervical cancer in the developing world. Methods in Molecular Biology,2015(1256), 155–170. https://doi.org/10.1007/978-1-4939-2172-0_11.

    Article  Google Scholar 

  77. Zhang, Y., Chen, R., Xu, L., Ning, Y., Xie, S., Zhang, G. J., et al. (2015). Silicon nanowire biosensor for highly sensitive and multiplexed detection of oral squamous cell carcinoma biomarkers in saliva. Analytical Sciences,31(2), 73–78. https://doi.org/10.2116/analsci.31.73.

    Article  Google Scholar 

  78. Naterstad, I. F., Berge, M. E., Johansson, A., Gjerde, K., Lehmann, S., et al. (2018). Reliability of an adherence monitoring sensor embedded in an oral appliance used for treatment of obstructive sleep apnoea. Journal of Oral Rehabilitation,45(2), 110–115. https://doi.org/10.1111/joor.12584. (Epub 2017 Dec 12).

    Article  Google Scholar 

  79. Padma, S., Umesh, S., Asokan, S., Srinivas, T., et al. (2017). Bite force measurement based on fiber Bragg grating sensor. Journal of Biomedial Optics,22(10), 1–6. https://doi.org/10.1117/1.JBO.22.10.107002.

    Article  Google Scholar 

  80. Bandodkar, A. J., Wang, J., et al. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology,32(7), 363–371. https://doi.org/10.1016/j.tibtech.2014.04.005.

    Article  Google Scholar 

  81. Silva de Lima, A. L., Evers, L. J. W., Hahn, T., Bataille, L., Hamilton, J. L., Little, M. A., et al. (2017). Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. Journal of Neurology,264(8), 1642–1654. https://doi.org/10.1007/s00415-017-8424-0. (Epub 2017 Mar 1).

    Article  Google Scholar 

  82. Moreno-Alsasua, L., Garcia-Zapirain, B., David Rodrigo-Carbonero, J., Ruiz, I. O., Hamrioui, S., de la Torre Díez, I., et al. (2017). Primary prevention of asymptomatic cardiovascular disease using physiological sensors connected to an iOS App. Journal of Medical Systems,41(12), 191. https://doi.org/10.1007/s10916-017-0840-2.

    Article  Google Scholar 

  83. Kim, J., Imani, S., de Araujo, W. R., Warchall, J., Valdés-Ramírez, G., Paixão, T. R., et al. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics,74, 1061–1068. https://doi.org/10.1016/j.bios.2015.07.039. (Epub 2015 Aug 1).

    Article  Google Scholar 

  84. Kishen, A., John, M. S., Lim, C. S., Asundi, A., et al. (2003). A fiber optic biosensor (FOBS) to monitor mutans streptococci in human saliva. 1. Biosensors and Bioelectronics,18(11), 1371–1378.

    Article  Google Scholar 

  85. Kim, J., Valdés-Ramírez, G., Bandodkar, A. J., Jia, W., Martinez, A. G., Ramírez, J., et al. (2014). Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. The Analyst,139(7), 1632–1636. https://doi.org/10.1039/c3an02359a.

    Article  Google Scholar 

  86. Goh, E. X., Lim, L. P., et al. (2017). Fact or fiction? Powered toothbrushing is more effective than manual toothbrushing. Oral Health and Preventive Dentistry,15(1), 23–32. https://doi.org/10.3290/j.ohpd.a37710.

    Article  Google Scholar 

  87. De Saulles, M. (2017). Toothbrushes in an IoT world. The information matters-business data. Retrieved from https://informationmatters.net/smart-toothbrushes-iot/. Accessed 3 Jan 2019.

  88. Evangelista, B. (2016). Smart toothbrushes the latest Internet of Things battleground. Retrieved from https://www.sfgate.com/business/article/Smart-toothbrushes-the-latest-Internet-of-Things-7971669.php. Accessed 3 Jan 2019.

  89. Qureshi, F., Krishnan, S., et al. (2018). Review-wearable hardware design for the Internet of Medical Things (IoMT). Sensors (Basel),11, E3812. https://doi.org/10.3390/s18113812. (Review).

    Article  Google Scholar 

  90. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., et al. (2016). Edge Computing: Vision and Challenges. IEEE Internet Things Journal,2016(3), 637–646.

    Article  Google Scholar 

  91. Klonoff, D. C. (2017). Fog computing and edge computing architectures for processing data from diabetes devices connected to the Medical Internet of Things. Journal of Diabetes Science and Technology,11(4), 647–652. https://doi.org/10.1177/1932296817717007.

    Article  Google Scholar 

  92. Dargaville, P. A., Sadeghi Fathabadi, O., Plottier, G. K., et al. (2017). Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant. Archives of Disease in Childhood Fetal and Neonatal Edition,102(1), F31–F36. https://doi.org/10.1136/archdischild-2016-310650. (Epub 2016 Sep 15).

    Article  Google Scholar 

  93. Sun, J., Guo, Y., Wang, X., Zeng, Q., et al. (2016). mHealth For Aging China: Opportunities and challenges. Aging Disease,7(1), 53–67. https://doi.org/10.14336/ad.2015.1011. (eCollection 2016 Jan).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Salagare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salagare, S., Prasad, R. An Overview of Internet of Dental Things: New Frontier in Advanced Dentistry. Wireless Pers Commun 110, 1345–1371 (2020). https://doi.org/10.1007/s11277-019-06790-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06790-4

Keywords

Navigation