Skip to main content
Log in

Improved Least Squares Approaches for Differential Received Signal Strength-Based Localization with Unknown Transmit Power

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of improving unknown node localization by using differential received signal strength (DRSS). Many existing localization approaches, especially those using the least squares methods, either ignore nonlinear constraint among model parameters or utilize them inefficiently. In this paper, we develop four DRSS-based localization methods by utilizing different combinations of covariance and weight matrices. Each method constructs a two-stage procedure. During the first stage, an initial coarse position estimate is obtained. The second stage results the refined localization by accounting for nonlinear dependency among estimator variables. The proper choice among these proposed methods may be offered, depending on a particular signal to noise range. We implement these methods and compare them with some of the state-of-art methods in this particular problem domain and verify their performances by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Google Scholar 

  2. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Google Scholar 

  3. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.

    Google Scholar 

  4. Huang, H., Yin, H., Luo, Y., Zhang, X., Min, G., & Fan, Q. (2016). Three-dimensional geographic routing in wireless mobile ad hoc and sensor networks. IEEE Network, 30(2), 82–90.

    Google Scholar 

  5. Wang, Y., Wu, K., & Ni, L. M. (2017). Wifall: Device-free fall detection by wireless networks. IEEE Transactions on Mobile Computing, 16(2), 581–594.

    Google Scholar 

  6. Butun, I., Morgera, S. D., & Sankar, R. (2014). A survey of intrusion detection systems in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(1), 266–282.

    Google Scholar 

  7. Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensors, 9(11), 8722–8747.

    Google Scholar 

  8. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., et al. (2004). A line in the sand: A wirelesssensor network for target detection, classification, and tracking. Computer Networks, 46(5), 605–634.

    Google Scholar 

  9. Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.

    MathSciNet  MATH  Google Scholar 

  10. Wang, G., Bhuiyan, M. Z. A., Cao, J., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.

    Google Scholar 

  11. Kuo, T. W., Lin, K. C. J., & Tsai, M. J. (2016). On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: NP-completeness and approximation algorithms. IEEE Transactions on Computers, 65(10), 3109–3121.

    MathSciNet  MATH  Google Scholar 

  12. Ma, J., Lou, W., & Li, X. Y. (2014). Contiguous link scheduling for data aggregation in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(7), 1691–1701.

    Google Scholar 

  13. Rezvani, M., Ignjatovic, A., Bertino, E., & Jha, S. (2015). Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. IEEE Transactions on Dependable and Secure Computing, 12(1), 98–110.

    Google Scholar 

  14. Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.

    MATH  Google Scholar 

  15. Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.

    Google Scholar 

  16. Chan, Y. T., Tsui, W. Y., So, H. C., & Ching, P. C. (2006). Time-of-arrival based localization under NLOS conditions. IEEE Transactions on Vehicular Technology, 55(1), 17–24.

    Google Scholar 

  17. Xu, E., Ding, Z., & Dasgupta, S. (2011). Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Transactions on Signal Processing, 59(6), 2887–2897.

    MathSciNet  MATH  Google Scholar 

  18. Schau, H. C., & Robinson, A. Z. (1987). Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(8), 1223–1225.

    Google Scholar 

  19. Kulakowski, P., Vales-Alonso, J., Egea-López, E., Ludwin, W., & García-Haro, J. (2010). Angle-of-arrival localization based on antenna arrays for wireless sensor networks. Computers and Electrical Engineering, 36(6), 1181–1186.

    MATH  Google Scholar 

  20. Rong, P., & Sichitiu, M. L. (2006). Angle of arrival localization for wireless sensor networks. In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks, 2006. SECON’06 (Vol. 1, pp. 374–382). IEEE.

  21. Li, X. (2007). Collaborative localization with received-signal strength in wireless sensor networks. IEEE Transactions on Vehicular Technology, 56(6), 3807–3817.

    Google Scholar 

  22. Ouyang, R. W., Wong, A. K. S., & Lea, C. T. (2010). Received signal strength-based wireless localization via semidefinite programming: Noncooperative and cooperative schemes. IEEE Transactions on Vehicular Technology, 59(3), 1307–1318.

    Google Scholar 

  23. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.

    Google Scholar 

  24. Elnahrawy, E., Li, X., & Martin, R. P. (2004). The limits of localization using signal strength: A comparative study. In First annual IEEE communications society conference on sensor and ad hoc communications and networks, 2004. IEEE SECON 2004 (pp. 406–414). IEEE.

  25. So, H. C., & Lin, L. (2011). Linear least squares approach for accurate received signal strength based source localization. IEEE Transactions on Signal Processing, 59(8), 4035–4040.

    MathSciNet  MATH  Google Scholar 

  26. Xu, Y., Zhou, J., & Zhang, P. (2014). RSS-based source localization when path-loss model parameters are unknown. IEEE Communications Letters, 18(6), 1055–1058.

    Google Scholar 

  27. Lohrasbipeydeh, H., Gulliver, T. A., & Amindavar, H. (2014). Blind received signal strength difference based source localization with system parameter errors. IEEE Transactions on Signal Processing, 62(17), 4516–4531.

    MathSciNet  MATH  Google Scholar 

  28. Hu, Y., & Leus, G. (2017). Robust differential received signal strength-based localization. IEEE Transactions on Signal Processing, 65(12), 3261–3276.

    MathSciNet  MATH  Google Scholar 

  29. Vaghefi, R. M., Gholami, M. R., Buehrer, R. M., & Strom, E. G. (2013). Cooperative received signal strength-based sensor localization with unknown transmit powers. IEEE Transactions on Signal Processing, 61(6), 1389–1403.

    MathSciNet  MATH  Google Scholar 

  30. Tomic, S., Beko, M., & Dinis, R. (2015). RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooperative schemes. IEEE Transactions on Vehicular Technology, 64(5), 2037–2050.

    Google Scholar 

  31. Biswas, P., Liang, T. C., Toh, K. C., Ye, Y., & Wang, T. C. (2006). Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Transactions on Automation Science and Engineering, 3(4), 360–371.

    Google Scholar 

  32. Meng, C., Ding, Z., & Dasgupta, S. (2008). A semidefinite programming approach to source localization in wireless sensor networks. IEEE Signal Processing Letters, 15, 253–256.

    Google Scholar 

  33. Vaghefi, R. M., & Buehrer, R. M. (2013). Received signal strength-based sensor localization in spatially correlated shadowing. In ICASSP (pp. 4076–4080).

  34. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  35. Kay, S. M. (1993). Fundamentals of statistical signal processing, volume I: estimation theory. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  36. Markovsky, I., & Van Huffel, S. (2007). Overview of total least-squares methods. Signal Processing, 87(10), 2283–2302.

    MATH  Google Scholar 

  37. Kondratyuk, L. A., & Krivoruchenko, M. I. (1992). Superconducting quark matter in SU (2) colour group. Zeitschrift für Physik A Hadrons and Nuclei, 344(1), 99–115.

    Google Scholar 

  38. Beaulieu, N. C. (2012). An extended limit theorem for correlated lognormal sums. IEEE Transactions on Communications, 60(1), 23–26.

    Google Scholar 

  39. Liu, Z., Almhana, J., & McGorman, R. (2008). Approximating lognormal sum distributions with power lognormal distributions. IEEE Transactions on Vehicular Technology, 57(4), 2611–2617.

    Google Scholar 

  40. Lam, C. L. J., & Le-Ngoc, T. (2007). Log-shifted gamma approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology, 56(4), 2121–2129.

    Google Scholar 

  41. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. New York: Tata McGraw-Hill Education.

    Google Scholar 

  42. Blacher, R. (2003). Multivariate quadratic forms of random vectors. Journal of Multivariate Analysis, 87(1), 2–23.

    MathSciNet  MATH  Google Scholar 

  43. Elkhalil, K., Kammoun, A., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Analytical derivation of the inverse moments of one-sided correlated gram matrices with applications. IEEE Transactions on Signal Processing, 64(10), 2624–2635.

    MathSciNet  MATH  Google Scholar 

  44. Doucet, A., De Freitas, N., & Gordon, N. (Eds.), (2001). An introduction to sequential Monte Carlo methods. In Sequential Monte Carlo methods in practice. Statistics for Engineering and Information Science (pp. 3–14). New York, NY: Springer.

  45. Tong, Y. L. (2012). The multivariate normal distribution. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Danaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Covariance Matrix \({{{\mathbf {C}}}}_{\varvec{ \beta }}\) Appendix

Appendix: Derivation of Covariance Matrix \({{{\mathbf {C}}}}_{\varvec{ \beta }}\) Appendix

Lemma 1

If a normaln-dimensional multivariate random variable\({\varvec{x}}=\left[ x_1, \ldots ,x_n\right]\)has the distribution\({{\mathcal {N}}}\left( \varvec{\mu },\varvec{\Sigma }\right)\), then its moment generating function (MGF) is given by [45]

$$\begin{aligned} {\mathbf {M}}_{{\mathbf {x}}}({\varvec{a}})&=\,{{\mathbb {E}}}_{{{\mathbf {x}}}}\left\{ \text {exp}\left( {{{\varvec{a}}}}^{\mathrm{T}}\cdot {\varvec{x}}\right) \right\} =\text {exp}\left( {{{\varvec{a}}}}^{\mathrm{T}}\cdot {\varvec{\mu }}{\mathbf +}\frac{1}{2}{{{\varvec{a}}}}^{\mathrm{T}}\cdot {\mathbf \Sigma }\cdot {{\varvec{a}}}\right) \end{aligned}$$
(35)

where\({\varvec{a}}=\left[ a_1, \ldots ,a_n\right]\)is a known vector withnreal elements.

we may substitute the normal n-dimensional multivariate random vector \(\left[ R_d\left( 2,1\right) ,\ldots ,R_d\left( L,1\right) \right]\) for \({{\varvec{x}}}\). According to (4), the joint multivariate distribution of random variables \(R_d\left( l\mathrm{,1}\right) \mathrm{,\ }l\mathrm{=2,}\ldots \mathrm{,}L\) is

$$\begin{aligned} \begin{aligned} f_{R_d\left( 2,1\right) ,\ldots ,R_d\left( L,1\right) }&\left( {\left[ r_1, \ldots ,r_{L-1}\right] }^\mathrm{T}\right) \\&=\frac{1}{{\left( 2\pi \right) }^{\left( L-1\right) /2}{\left| {\mathrm{C}}_R\right| }^{1/2}}exp\left[ -\frac{1}{2}\left( {\widetilde{{\varvec{r}}}}^\mathrm{T}{\mathrm{C}}^{-1}_R\widetilde{{\varvec{r}}}\right) \right] , \\&\widetilde{{\varvec{r}}}=\left[ r_1+10\alpha {\text {Log}}_{10}\left( \frac{d_2}{d_1}\right) ,\ldots ,r_{L-1}+10\alpha {\text {Log}}_{10}\left( \frac{d_L}{d_1}\right) \right] \end{aligned} \end{aligned}$$
(36)

and covariance matrix \({\mathrm{C}}_R\) is a \(\left( L-1\right) \times \left( L-1\right)\) matrix whose all off-diagonal elements are \(\sigma ^2\) and its diagonal elements are \({2\sigma }^2\), where

$$\begin{aligned} \mathbf {\mathrm{C}}_R=&\begin{bmatrix} {2\sigma }^2&\sigma ^2&\cdots&\sigma ^2 \\ \sigma ^2&{2\sigma }^2&\cdots&\sigma ^2 \\ \vdots&\ddots&\ddots&\vdots \\ \sigma ^2&\cdots&2\sigma ^2&\sigma ^2 \\ \sigma ^2&\cdots&\sigma ^2&{2\sigma }^2 \end{bmatrix}. \end{aligned}$$
(37)

Then \({{\varvec{x}}}\) has the distribution defined in (36) where \(\left[ -10\alpha {\text {Log}}_{10}\left( {d_2}/{d_1}\right) ,\right.\)\(\left. \cdots ,-10\alpha {\text {Log}}_{10}\left( {d_L}/{d_1}\right) \right]\) and \({\mathrm{C}}_R\) are substituted for \({\varvec{\mu }}\) and \({\mathbf \Sigma }\) respectively in (35).

By using Lemma 1, the \({\left( i,j\right) }^{\mathrm{th}}\) entry of covariance matrix \({{{\mathbf {C}}}}_{{\beta }}\) is given by

$$\begin{aligned} \begin{aligned} {{{{\mathbf {C}}}}_{\beta }}_{i,j}=&{{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-1}_{i+1\mathrm{,1}}\beta ^{-1}_{j+1\mathrm{,1}}\right\} \\&-{{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-1}_{i+1\mathrm{,1}}\right\} \cdot {{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-1}_{j+1\mathrm{,1}}\right\} ,\\&\ i,j\in \left\{ 1, \ldots ,L-1\right\} ,i\ne j. \end{aligned} \end{aligned}$$
(38)

For example, by setting \(i=1\) and \(j=2\), then \(\beta ^{-1}_{2\mathrm{,1}}\beta ^{-1}_{3\mathrm{,1}}\) and vector \({{\varvec{a}}}\) equal to, respectively, \(\text {exp}({{{\varvec{a}}}}^\mathrm{T} \cdot {\left[ R_d\left( 2,1\right) , \ldots ,R_d\left( L,1\right) \right] }^\mathrm{T})\) and \({-}\left( {2\text {Ln}\left( \mathrm{10}\right) }/{\mathrm{10}\alpha }\right) \cdot {\left[ -1,-1,0,0\right] }^T\).

According to (35), we have

$$\begin{aligned} \begin{aligned}&{{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-1}_{2\mathrm{,1}}\beta ^{-1}_{3\mathrm{,1}}\right\} \\&\quad = \text {exp}\left\{ -2\text {Ln}\left( 10\right) \cdot {\text {Log}}_{10}\left( \frac{d_2{\cdot d}_3}{d^2_1}\right) +\frac{1}{2}\cdot {\left( \frac{2\text {Ln}\left( \mathrm{10}\right) }{\mathrm{10}\alpha }\right) }^2\cdot \left( {6\sigma }^2\right) \right\} \end{aligned} \end{aligned}$$
(39)

In order to write (39), we have used the relation

$$\begin{aligned} \begin{bmatrix} 1&1&0&0 \end{bmatrix} \cdot \begin{bmatrix} 2\sigma ^2&\sigma ^2&\sigma ^2&\sigma ^2 \\\sigma ^2&2\sigma ^2&\sigma ^2&\sigma ^2 \\ \sigma ^2&\sigma ^2&2\sigma ^2&\sigma ^2 \\\sigma ^2&\sigma ^2&\sigma ^2&2\sigma ^2 \end{bmatrix}\cdot \begin{bmatrix}1 \\ 1 \\ 0 \\ 0 \end{bmatrix}=\left( {6\sigma }^2\right) \end{aligned}$$
(40)

Similarly, by taking \(\beta ^{-1}_{2\mathrm{,1}}\) as \(\text {exp}({{{\varvec{a}}}}^T\cdot {\left[ R_d\left( 2,1\right) , \ldots ,R_d\left( L,1\right) \right] }^T)\), then \({{\varvec{a}}}\) equals \({-}\left( {2\text {Ln}\left( \mathrm{10}\right) }/{\mathrm{10}\alpha }\right) \cdot {\left[ -1,0,0,0\right] }^T\) and according to (35), we have

$$\begin{aligned} \begin{aligned} \mathbb {E}_{\underset{l=2,\ldots ,5}{R_d\left( l,1\right) }}\left\{ \beta ^{-1}_{2,1}\right\}&= \text {exp}\left\{ -2\text {Ln}\left( 10\right) \cdot \text {Log}_{10}(\frac{d_2}{d_1}) + \frac{1}{2}\cdot {\left( \frac{2\text {Ln}(10)}{10\alpha }\right) }^2\cdot \left( {2\sigma }^2\right) \right\} . \end{aligned} \end{aligned}$$
(41)

In the same way, \({{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2,\ldots ,5 \end{array} }\left\{ \beta ^{-1}_{3\mathrm{,1}}\right\}\) is given by

$$\begin{aligned} \begin{aligned} \mathbb {E}_{\underset{l=2,\ldots ,5}{R_d\left( l,1\right) }}\left\{ \beta ^{-1}_{3,1}\right\}&= \text {exp}\left\{ -2\text {Ln}\left( 10\right) \cdot \text {Log}_{10}\left( \frac{d_3}{d_1}\right) +\frac{1}{2}\cdot {\left( \frac{2\text {Ln}\left( 10\right) }{10\alpha }\right) }^2\cdot \left( {2\sigma }^2\right) \right\} . \end{aligned} \end{aligned}$$
(42)

As a result, \({{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2,\ldots ,5 \end{array} }\left\{ \beta ^{-1}_{3\mathrm{,1}}\right\} \cdot {{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2,\ldots ,5 \end{array} }\left\{ \beta ^{-1}_{2,1}\right\}\) is achieved by

$$\begin{aligned} \begin{aligned}&\mathbb {E}_{\underset{l=2,\ldots ,5}{R_d\left( l,1\right) }}\left\{ \beta ^{-1}_{3,1}\right\} \cdot \mathbb {E}_{\underset{l=2,\ldots ,5}{R_d\left( l,1\right) }}\left\{ \beta ^{-1}_{2,1}\right\} \\&\quad = \text {exp} \left\{ -2\text {Ln}\left( 10\right) \cdot \text {Log}_{10}\left( \frac{d_2\cdot d_3}{d_1 ^2}\right) + {\left( \frac{-2\text {Ln}\left( \mathrm{10}\right) }{10\alpha }\right) }^2\cdot \left( {2\sigma }^2\right) \right\} . \end{aligned} \end{aligned}$$
(43)

Substituting equation from (39) to (43) in (38), \({{{{\mathbf {C}}}}_{{\beta }}}_{2,3}\ \) is given by

$$\begin{aligned} \begin{aligned} {{{\mathbf C}}_{{\beta }}}_{2,3}&=\text {exp}\left\{ -2\text {Ln}\left( 10\right) \cdot {\text {Log}}_{10}\left( \frac{d_2{\cdot d}_3}{d^2_1}\right) +\frac{1}{2}\cdot {\left( \frac{2\text {Ln}\left( \mathrm{10}\right) }{\mathrm{10}\alpha }\right) }^2\cdot \left( {6\sigma }^2\right) \right\} \\&-\text {exp}\left\{ -2\text {Ln}\left( 10\right) \cdot {\text {Log}}_{10}\left( \frac{d_2{\cdot d}_3}{d^2_1}\right) +{\left( \frac{2\text {Ln}\left( \mathrm{10}\right) }{\mathrm{10}\alpha }\right) }^2\cdot \left( {2\sigma }^2\right) \right\} \end{aligned} \end{aligned}$$
(44)

and the diagonal elements of the covariance matrix \({{{\mathbf C}}_{{\beta }}}\) are given by

$$\begin{aligned} \begin{aligned} {\mathbf {C}}_{\beta _{i,i}}={{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-2}_{i+1,1}\right\} {-}{{{\mathbb {E}}}}^2_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-1}_{i+1\mathrm{,1}}\right\} ,\ \ i\in \left\{ 1, \ldots ,L-1\right\} \end{aligned} \end{aligned}$$
(45)

By setting \(i=1\), and taking \(\beta ^{-2}_{i+1\mathrm{,1}}\) as \(\text {exp}({{{\varvec{a}}}}^\mathrm{T}\cdot {\left[ R_d\left( 2,1\right) , \ldots ,R_d\left( L,1\right) \right] }^\mathrm{T})\), then \({{\varvec{a}}}\) equals \({-}({2\text {Ln}\left( \mathrm{10}\right) }/{\mathrm{10}\alpha })\cdot {\left[ -2,0,0,0\right] }^\mathrm{T}\). According to (35), we have

$$\begin{aligned} \begin{aligned} {{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-2}_{2\mathrm{,1}}\right\} =\text {exp}\left\{ -4\text {Ln}\left( 10\right) \cdot {\text {Log}}_{10}\left( \frac{d_2}{d_1}\right) +\frac{1}{2}\cdot {\left( \frac{4\text {Ln}\left( \mathrm{10}\right) }{\mathrm{10}\alpha }\right) }^2\cdot \left( {2\sigma }^2\right) \right\} \end{aligned} \end{aligned}$$
(46)

\({{{\mathbb {E}}}}_{ \begin{array}{c} R_d\left( l,1\right) \\ l=2, \ldots ,5 \end{array} }\left\{ \beta ^{-1}_{2\mathrm{,1}}\right\}\) is obtained in (41). Substituting (46) and (41) in (45), \({\mathbf {C}}_{\beta _{2,2}}\) is given by

$$\begin{aligned} \begin{aligned} \mathbf {C}_{\beta _{2,2}}&=\text {exp}\left\{ -4\text {Ln}\left( 10\right) \cdot {\text {Log}}_{10}\left( \frac{d_2}{d_1}\right) +\frac{1}{2}\cdot {\left( \frac{4\text {Ln}\left( \mathrm{10}\right) }{\mathrm{10}\alpha }\right) }^2\cdot \left( {2\sigma }^2\right) \right\} \\&-\text {exp}\left\{ -4\text {Ln}\left( 10\right) \cdot {\text {Log}}_{10}\left( \frac{d_2}{d_1}\right) +\cdot {\left( \frac{2\text {Ln}\left( \mathrm{10}\right) }{\mathrm{10}\alpha }\right) }^2\left( {2\sigma }^2\right) \right\} \end{aligned} \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danaee, M.R., Behnia, F. Improved Least Squares Approaches for Differential Received Signal Strength-Based Localization with Unknown Transmit Power. Wireless Pers Commun 110, 1373–1401 (2020). https://doi.org/10.1007/s11277-019-06791-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06791-3

Keywords

Navigation