Skip to main content
Log in

Circularly Polarized Microstrip-Line-Fed Antenna with Rotated Elliptical Slot Serving Satellite Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, a simple and compact microstrip-line-fed antenna integrated with rotated elliptical slot with circular polarization is proposed for satellite communication systems. The size and rotation of the elliptical slot is so chosen that it not only provides a large impedance bandwidth but also a large axial-ratio bandwidth (ARBW). The rotation of the elliptical slot around its center is responsible for circular polarization operation and gives an ARBW of 34.39% (8.78–12.15 GHz) which is highest among all earlier reported microstrip-line-fed slot structures intently designed for satellite communications. A large impedance bandwidth of more than 120.57% (8.59 to >20 GHz) is also obtained which covers X-band partially, \(\hbox {K}_u\)-band completely and extends up to K-band. Theoretical and parametric analysis is performed using accurate design equations for the dimensions and rotation of the elliptical slot and feeding distance. The peak gain of 5.45 dB and 3.6 dB is obtained within impedance bandwidth and ARBW range respectively. A good agreement between simulated results and experimental results makes the proposed antenna a very promising candidate for practical \({X}/{K_{u}}/{\mathrm{K}}\) band satellite communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Islam, M. T., Cho, M., Samsuzzaman, M., & Kibria, S. (2015). Compact antenna for small satellite applications. IEEE Antennas and Propagation Magazine, 57(2), 30–36. https://doi.org/10.1109/MAP.2015.2420471.

    Article  Google Scholar 

  2. Arnieri, E., Boccia, L., Amendola, G., & Massa, G. D. (2007). A compact high gain antenna for small satellite applications. IEEE Transactions on Antennas and Propagation, 55(2), 277–282. https://doi.org/10.1109/TAP.2006.889831.

    Article  Google Scholar 

  3. Moustafa, L., & Jecko, B. (2010). Design of a wideband highly directive EBG antenna using double-layer frequency selective surfaces and multifeed technique for application in the Ku-band. IEEE Antennas and Wireless Propagation Letters, 9, 342–346. https://doi.org/10.1109/LAWP.2010.2047630.

    Article  Google Scholar 

  4. Habib Ullah, M., Islam, M. T., Ahsan, M. R., Mandeep, J. S., & Misran, N. (2014). A dual band slotted patch antenna on dielectric material substrate. International Journal of Antennas and Propagation,. https://doi.org/10.1155/2014/258682.

    Article  Google Scholar 

  5. Yu, C., Hong, W., Kuai, Z., & Wang, H. (2012). Ku-band linearly polarized omnidirectional planar filtenna. IEEE Antennas and Wireless Propagation Letters, 11, 310–313. https://doi.org/10.1109/LAWP.2012.2191259.

    Article  Google Scholar 

  6. Sahal, M., & Tiwari, V. N. (2016). Review of circular polarization techniques for design of microstrip patch antenna. In Proceedings of the international conference on recent cognizance in wireless communication & image processing: ICRCWIP-2014, New Delhi, India (pp. 663–669). https://doi.org/10.1007/978-81-322-2638-3_74

    Chapter  Google Scholar 

  7. Chen, H. D., Sim, C. Y. D., & Kuo, S. H. (2012). Compact broadband dual coupling-feed circularly polarized RFID microstrip tag antenna mountable on metallic surface. IEEE Transactions on Antennas and Propagation, 60(12), 5571–5577. https://doi.org/10.1109/TAP.2012.2210273.

    Article  Google Scholar 

  8. Yongzhong, W., Chaowei, S., Shiming, L., Wenbing, W., & Fujimoto, K. (1997). A new modified circular microstrip antenna. Journal of Electronics (China), 14(1), 75–81. https://doi.org/10.1007/s11767-996-1027-z.

    Article  Google Scholar 

  9. Ghiotto, A., Bourry, M., & Wu, K. (2007). Cross-slot coupled elliptical patch antenna circularly polarized for localization. Microwave and Optical Technology Letters, 49(2), 336–339. https://doi.org/10.1002/mop.22136.

    Article  Google Scholar 

  10. Wang, A. N., & Zhang, W. X. (2009). Design and optimization of broadband circularly polarized wide-slot antenna. Journal of Electromagnetic Waves and Applications, 23(16), 2229–2236. https://doi.org/10.1163/156939309790109289.

    Article  Google Scholar 

  11. Jan, J. Y., Wu, G. J., Pan, C. Y., & Chen, H. M. (2014). Broadband microstrip-line-fed circularly-polarized circular slot antenna. In 2014 IEEE international workshop on electromagnetics (iWEM) (pp. 58–59). https://doi.org/10.1109/iWEM.2014.6963634

  12. Shavit, R., Israeli, Y., Pazin, L., & Leviatan, Y. (2005). Dual frequency circularly polarised microstrip antenna. IEE Proceedings - Microwaves, Antennas and Propagation, 152(4), 267–272. https://doi.org/10.1049/ip-map:20045137.

    Article  Google Scholar 

  13. Row, J. S., & Wu, S. W. (2008). Circularly-polarized wide slot antenna loaded with a parasitic patch. IEEE Transactions on Antennas and Propagation, 56(9), 2826–2832. https://doi.org/10.1109/TAP.2008.928769.

    Article  Google Scholar 

  14. Kim, S. M., & Yang, W. G. (2007). Single feed wideband circular polarised patch antenna. Electronics Letters, 43(13), 703–704. https://doi.org/10.1049/el:20070677.

    Article  Google Scholar 

  15. Prajapati, P. R. (2016). Multilayered circularly polarized microstrip antenna integrated with defected ground structure for wide impedance and axial ratio bandwidth. Journal of Electromagnetic Waves and Applications, 30(17), 2256–2267. https://doi.org/10.1080/09205071.2016.1245160.

    Article  Google Scholar 

  16. Li, J., Wang, C., Zhang, A., Joines, W. T., & Liu, Q. H. (2017). Microstrip-line-fed reactively loaded circularly polarized annular-ring slot antenna. Journal of Electromagnetic Waves and Applications, 31(1), 101–110. https://doi.org/10.1080/09205071.2016.1277790.

    Article  Google Scholar 

  17. Fakheri, M., Moghadasi, N. M., & Sadeghzadeh, R. A. (2017). A broad band circularly polarized cross slot cavity back array antenna with sequentially rotated feed network for improving gain in X-band application. International Journal of Microwave and Wireless Technologies, 9, 705–710. https://doi.org/10.1017/S1759078716000532.

    Article  Google Scholar 

  18. Fujita, K., Yoshitomi, K., Yoshida, K., & Kanaya, H. (2015). A circularly polarized planar antenna on flexible substrate for ultra-wideband high-band applications. International Journal of Electronics and Communications, 69(9), 1381–1386. https://doi.org/10.1016/j.aeue.2015.06.005.

    Article  Google Scholar 

  19. Kretzschmar, J. G. (1970). Wave propagation in hollow conducting elliptical waveguides. IEEE Transactions on Microwave Theory and Techniques, 18(9), 547–554. https://doi.org/10.1109/TMTT.1970.1127288.

    Article  Google Scholar 

  20. Kumprasert, N. (2000). Theoretical study of dual-resonant frequency and circular polarization of elliptical microstrip antennas. In IEEE antennas and propagation society international symposium. Transmitting waves of progress to the next millennium. 2000 digest. Held in conjunction with: USNC/URSI national radio science meeting (Vol. 2, pp. 1015–1020). https://doi.org/10.1109/APS.2000.875394.

  21. Mythili, P., & Das, A. (1997). Resonant frequencies of an elliptical microstrip antenna. In Proceedings of SPIE 3046, smart structures and materials 1997: Smart electronics and MEMS (Vol. 18). https://doi.org/10.1117/12.276622

  22. Caloz, C., Okabe, H., Iwai, T., & Itoh, T. (2004). A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microwave and Wireless Components Letters, 14(4), 133–135. https://doi.org/10.1109/LMWC.2004.828725.

    Article  Google Scholar 

  23. Balanis, C. A. (2005). Antenna theory analysis and design (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  24. Guha, D., Antar, Y. M. M., Siddiqui, J. Y., & Biswas, M. (2005). Resonant resistance of probe- and microstrip-line-fed circular microstrip patches. IEE Proceedings - Microwaves, Antennas and Propagation, 152(6), 481–484. https://doi.org/10.1049/ip-map:20045161.

    Article  Google Scholar 

  25. Derneryd, A. (1979). Analysis of the microstrip disk antenna element. IEEE Transactions on Antennas and Propagation, 27(5), 660–664. https://doi.org/10.1109/TAP.1979.1142159.

    Article  Google Scholar 

  26. Derneryd, A. (1978). Microstrip disc antenna covers multiple frequencies. Microwave Journal, 21, 77–79.

    Google Scholar 

  27. Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions: With formulas, graphs, and mathematical tables., National Bureau of Standards Applied Mathematics Series-55 New York: Dover Publications.

    MATH  Google Scholar 

  28. Tang, W., Chow, Y. L., & Tsang, K. F. (2004). Different microstrip line discontinuities on a single field-based equivalent circuit model. IEE Proceedings - Microwaves, Antennas and Propagation, 151(3), 256–262. https://doi.org/10.1049/ip-map:20040268.

    Article  Google Scholar 

  29. ANSYS Electronics Desktop Simulation Software, ver. 17.0. http://www.ansys.com/products/electronics/ansys-electronics-desktop. Accessed 13 March 2018.

  30. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Analysis and design of wide band microstrip-line-fed antenna with defected ground structure for Ku band applications. International Journal of Electronics and Communications, 68(10), 951–957. https://doi.org/10.1016/j.aeue.2014.04.017.

    Article  Google Scholar 

  31. Ahsan, M. R., Islam, M. T., Habib Ullah, M., Aldhaheri, R. W., & Sheikh, M. M. (2016). A new design approach for dual-band patch antenna serving Ku/K band satellite communications. International Journal of Satellite Communications and Networking, 34(6), 759–769. https://doi.org/10.1002/sat.1130.

    Article  Google Scholar 

  32. Ansari, J. A., Verma, S., Verma, M. K., & Agrawal, N. (2015). A novel wide band microstrip-line-fed antenna with defected ground for CP operation. Progress in Electromagnetics Research C, 58, 169–181. https://doi.org/10.2528/PIERC15052305.

    Article  Google Scholar 

  33. Li, X., Zhu, H., Zhang, D., Sun, Z., Yuan, Y., & Yu, D. (2014). Two-dimensional scanning antenna array for UHF radio frequency identification system application. IET Microwaves, Antennas & Propagation, 8(14), 1250–1258. https://doi.org/10.1049/iet-map.2014.0039.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Electronics and Information Technology, Govt. of India for supporting this research under Visvesvaraya Ph.D. scheme for Electronics and IT. The authors are also grateful to G. B. Pant Engineering College, New Delhi for providing support and assistance to perform testing of the proposed antenna structures.

Funding

Funding was provided by Department of Electronics and Information Technology, Ministry of Communications and Information Technology (Grant No. PhD-MLA/4(60)/2015-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Nath, V. Circularly Polarized Microstrip-Line-Fed Antenna with Rotated Elliptical Slot Serving Satellite Communications. Wireless Pers Commun 110, 1443–1458 (2020). https://doi.org/10.1007/s11277-019-06794-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06794-0

Keywords

Navigation