Skip to main content
Log in

Dual-Band Linearly Polarized Integrated Dielectric Resonator Antenna for Wi-MAX Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article shows a dual-band ring di-electric resonator antenna for Wi-MAX applications. The suggested antenna is made up of several elements of ring di-electric resonator antenna and an improved polygon shaped slot antenna. A modified hexagonal polygon shaped is used as both radiator and excitation mechanism for ring DRA and its generate HE11δ mode in ring DRA. For the validation of simulated results, fabrication test has been done of suggested archetype radiator. The suggested radiator performs in following frequency bands like 2.9–3.6 GHz, 5.2–5.6 GHz respectively. The application of the presented antenna is WiMAX application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Petosa, A. (2007). Dielectric resonator antenna handbook. Norwood, MA: Artech House.

    Google Scholar 

  2. Long, S. A., McAllister, M. W., & Shen, L. C. (1983). The resonant dielectric cavity antenna. IEEE Transaction on Antennas and Propagation,31(3), 406–412.

    Article  Google Scholar 

  3. Luk, K. M., & Leung, K. W. (2003). Dielectric resonator Antenna. Baldock, Hertfordshire: Research Studies Press Ltd.

    Google Scholar 

  4. Balanis, C. A. (2005). Antenna theory: Analysis and design (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  5. Chen, H. M., Wang, Y. K., Lin, Y. F., & Pan, S. C. (2009). A compact dual-band dielectric resonator antenna using a parasitic slot. IEEE Antennas and Wireless Propag. Letters,8, 173–176.

    Article  Google Scholar 

  6. Din, Y., & Leung, K. W. (2009). On the dual-band DRA-slot hybrid antenna. IEEE Transactions on Antennas and Propagation,57, 624–630.

    Article  Google Scholar 

  7. Li, Y. F., Chen, H. M., & Lin, C. H. (2009). Compact dual-band hybrid dielectric resonator antenna with radiating slot. IEEE Antennas and Wireless Propagation Letters,8, 6–9.

    Article  Google Scholar 

  8. Sharma, A., Das, G., & Gangwar, R. K. (2017). Dual-band circularly polarized hybrid antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letter,59, 2450–2457.

    Article  Google Scholar 

  9. Sharma, A., & Gangwar, R. K. (2016). Circularly polarised hybrid Z-shaped cylindrical dielectric resonator antenna for multiband applications. IET Microwaves, Antennas and Propagation,10, 1259–1267.

    Article  Google Scholar 

  10. Guha, D., Gupta, P., & Kumar, C. (2015). Dual band cylindrical dielectric resonator antenna employing HE11δ and HE12δ mode excited by new composite structure. IEEE Transaction on Antennas and Propagation,63, 433–438.

    Article  Google Scholar 

  11. Sharma, A., Das, G., Ranjan, P., Sahu, N. K., & Gangwar, R. K. (2016). Novel feeding mechanism to stimulate triple radiating modes in cylindrical dielectric resonator antenna. IEEE Access,4, 9987–9992.

    Article  Google Scholar 

  12. Sharma, A., Ranjan, P., & Gangwar, R. K. (2017). Multiband cylindrical dielectric resonator antenna for WLAN/WiMAX application. Electronics Letter,53, 132–134.

    Article  Google Scholar 

  13. Hamsakutty, V., Kumar, A. V. P., Bindu, G., Thomas, V., Lonappan, A., Yohannan, J., et al. (2005). A multi frequency coaxial-fed metal coated dielectric resonator antenna. Microwave and Optical Technology Letters,47, 573–575.

    Article  Google Scholar 

  14. Ghosh, B., Ghosh, K., & Panda, C. S. (2009). Coplanar waveguide feed to the hemispherical DRA. IEEE Transactions on Antennas and Propagation,57, 1566–1570.

    Article  Google Scholar 

  15. Huitema, L., Koubeissi, M., Mouhamadou, M., Arnaud, E., Decroze, C., & Monediere, T. (2011). Compact and multiband dielectric resonator antenna with pattern diversity for multi standard mobile handheld devices. IEEE Transactions on Antennas and Propagation,59, 4201–4208.

    Article  Google Scholar 

  16. Satish, K., Manveer, S., & Brar, K. (2013). Aperture coupled pentagon shaped dielectric resonator antennas providing multiband and wideband performance. Microwave and Optical Technology Letters,55, 395–400.

    Article  Google Scholar 

  17. Hamasakutty, V., Kumar, A. V. P., Yohannan, J., Bindu, G., & Mathew, K. T. (2006). Co-axial fed hexagonal shaped dielectric resonator antenna for multi frequency operations. Microwave and Optical Technology Letters,48, 878–880.

    Article  Google Scholar 

  18. Bemani, M., Nikmehr, S., & Younesiraad, H. (2012). A novel small triple band rectangular dielectric resonator antenna for WLAN and WiMAX applications. Journal of Electromagnetic Waves,25, 1688–1698.

    Article  Google Scholar 

  19. Denidni, T. A., Rao, Q., & Sebak, A. R. (2005). Broadband L-shaped dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters,4, 453–454.

    Article  Google Scholar 

  20. Rao, Q., Denidni, T. A., & Sebak, A. R. (2006). Broadband compact stacked T-shaped DRA with equilateral-triangle cross sections. IEEE Antennas and Wireless Propagation Letters,16, 7–9.

    Google Scholar 

  21. Liang, X. L., & Denidni, T. A. (2008). H-shaped dielectric resonator antenna for wideband applications. IEEE Antennas and Wireless Propagation Letters,7(7–9), 163–166.

    Article  Google Scholar 

  22. Denidni, T. A., Weng, Z., & Niroo-Jazi, M. (2010). Z-shaped dielectric resonator antenna for ultra wideband applications. IEEE Transactions on Antennas and Propagation,58, 4059–4062.

    Article  Google Scholar 

  23. Zou, L., & Fumeaux, C. (2011). A cross-shaped dielectric resonator antenna for multifunction and polarization diversity applications. IEEE Antennas and Wireless Propagation Letters,10, 742–745.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D., Sharma, S.K. & Kushwah, V.S. Dual-Band Linearly Polarized Integrated Dielectric Resonator Antenna for Wi-MAX Applications. Wireless Pers Commun 111, 235–243 (2020). https://doi.org/10.1007/s11277-019-06854-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06854-5

Keywords

Navigation