Skip to main content
Log in

Reconfigurable Transparent All-Dielectric Water-Based Metamaterial for Microstrip Patch Antenna Gain Enhancement

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper present transparent, all dielectric water-based metamaterial (MM) superstrates with reconfigurable characteristics is employed for gain and bandwidth enhancement of a water-based microstrip patch antenna. The water-based microstrip patch antenna is fed by an L-shape probe. All dielectric water-based MM unit-cell element consists of dielectric cubic boxes filled with water is designed and analyzed. The reconfigurable electric properties are achieved via changing the water height in the MM unit-cell element. Different arrangements of the MM array with water height tapering are optimized and designed for microstrip patch antenna gain enhancement. The MM array is used as a single layer superstrate placed normal to the microstrip patch. A water-based MM lens consists of three layers is designed to collimate the radiation from the microstrip patch antenna. The phase compensation in the MM lens is achieved via changing the water height in the MM unit-cell elements of the lens. A reconfigurable beam in different directions from −30° to +30° is steered by changing the water level distribution over the MM lens unit-cell elements. A full-wave analysis using the finite integration technique is used for the design and analysis of the water-based MM lens arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Skobelev, S. P. (2011). Phased array antennas with optimized element patterns. Boston: Artech House.

    Google Scholar 

  2. Garg, R. (2001). Microstrip antenna design handbook. Boston: Artech House.

    Google Scholar 

  3. Cadoret, D., Laisné, A., Gillard, R., & Legay, H. (2005). A new reflectarray cell using microstrip patches loaded with slots. Microwave and Optical Technology Letters,44(3), 270–272.

    Article  Google Scholar 

  4. O’Keefe, S. G., & Kingsley, S. P. (2007). Tunability of liquid dielectric resonator antennas. IEEE Antennas and Wireless Propagation Letters,6, 533–536.

    Article  Google Scholar 

  5. Fayad, H., & Record, P. (2006). Broadband liquid antenna. Electronics Letters,42(3), 133–134.

    Article  Google Scholar 

  6. Qian, Y., & Chu, Q. X. (2017). A compact broadband water patch antenna. IEEE Antennas and Wireless Propagation Letters,16, 1911–1914.

    Article  Google Scholar 

  7. Singh, P., Aggarwal, A., & Choukiker, Y. K. (2017). Transparent water dense dielectric patch antenna. ARPN Journal of Engineering and Applied Sciences,12(17), 5212–5220.

    Google Scholar 

  8. Li, Y., & Luk, K. M. (2015). A water dense dielectric patch antenna. IEEE Access,3, 274–280.

    Article  Google Scholar 

  9. Zhou, R., Zhang, H., & Xin, H. (2009). A compact water based dielectric resonator antenna. Charleston: International Symposium on Antennas and Propagation Society.

    Book  Google Scholar 

  10. Sun, J., & Luk, K. M. (2016). A wideband transparent water patch antenna. In Conference on antenna measurements and applications (CAMA), Syracuse, NY, USA.

  11. Fayad, H., & Record, P. (2005). Wideband saline-water antenna (pp. 197–201). Birmingham: Wideband and Multi-band Antennas and Arrays conference.

    Google Scholar 

  12. Xing, L., Huang, Y., Xu, Q., & Alja’afreh, S. (2015). A wideband hybrid water antenna with an F-shaped monopole. IEEE Access,3, 1179–1187.

    Article  Google Scholar 

  13. Hu, Z., Wu, W., Shen, Z., & Hua, C. (2015). A Yagi monopole antenna made of pure water. Vancouver: IEEE International Symposium on Antennas and Propagation.

    Book  Google Scholar 

  14. Zouhdi, S., Ari, S., & Alexey, P. (2008). Metamaterials and plasmonics: Fundamentals, modelling, applications. Berlin: Springer.

    Google Scholar 

  15. Gangwar, K., & Gangwar, R. P. S. (2014). Metamaterials: Characteristics, process and applications. Advance in Electronic and Electric Engineering,4(1), 97–106.

    MATH  Google Scholar 

  16. Zainud-Deen, S. H., Mabrouk, A. M., & Malhat, H. A. (2018). Frequency tunable graphene metamaterial reflectarray. Wireless Personal Communications. https://doi.org/10.1007/s11277-018-5884-1.

    Article  Google Scholar 

  17. Zainud-Deen, S. H., Mabrouk, A. M., & Malhat, H. A. (2018). Terahertz graphene based metamaterial transmitarray. Wireless Personal Communications,100(3), 1235–1248.

    Article  Google Scholar 

  18. Moitra, P., Yang, Y., Anderson, Z., Kravchenko, I., Briggs, D., & Valentine, J. (2013). Realization of an all-dielectric zero-index optical metamaterial. Applied Physics Letters (AIP),7, 791–795.

    Google Scholar 

  19. Jahani, S., & Jacob, Z. (2016). All-dielectric metamaterials. Nature Nanotechnology,11, 23–36.

    Article  Google Scholar 

  20. Kamada, S., Michishita, N., & Yamada, Y. (2010). Metamaterial lens antenna using dielectric resonators for wide angle beam scanning. Toronto: International Symposium of Antennas and Propagation Society.

    Book  Google Scholar 

  21. Sun, L., Feng, S., & Yang, X. (2012). Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials. Applied Physics Letters,101(24), 241101.

    Article  Google Scholar 

  22. Ibrahim, M., Zainud-Deen, S. H., & Botros, A. Z. (2012). radiation and scattering from bodies coated with metamaterials by GPU, LAP LAMBRET Academic Publishing. Deutschland: AV Akademikerverlag GmbH & Co. KG.

    Google Scholar 

  23. Clemens, M., & Weiland, T. (2001). Discrete electromagnetism with the finite integration technique. Progress In Electromagnetics Research,32, 65–87.

    Article  Google Scholar 

  24. Zhou, X., & Pan, G. W. (2006). Application of physical spline finite element method (PSFEM) to full wave analysis of waveguide. Progress In Electromagnetics Research,60, 19–41.

    Article  Google Scholar 

  25. Feng, B. (2006). Extracting material constitutive parameters from scattering parameters, M.Sc. Thesis, Naval Postgraduate School, Monterey, California.

  26. Makanjuola, N. T., Shoewu, O. O., Akinyemi, L. A., & Ajasa, A. A. (2015). Design and development of microcontroller based liquid level detector with graphical output. Pacific Journal of Science and Technology, 16, 173–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona M. Badawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., Badawy, M.M. & Malhat, H.A. Reconfigurable Transparent All-Dielectric Water-Based Metamaterial for Microstrip Patch Antenna Gain Enhancement. Wireless Pers Commun 111, 443–461 (2020). https://doi.org/10.1007/s11277-019-06868-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06868-z

Keywords

Navigation