Skip to main content

Advertisement

Log in

MOMHR: A Dynamic Multi-hop Routing Protocol for WSN Using Heuristic Based Multi-objective Function

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are the networks which mainly focuses on the applications and are composed of considerable sensor nodes. The use of energy in a valuable way is considered as a feature for the design structure of WSNs. In the WSNs, the nodes power sources are limited. Moreover, because of this, there is a must for a different approach regarding the energy availability and this is mainly for long distance communication, for this multi-hop (MH) systems are chosen. Even though MH decreases the energy cost used by all node along the path, however, to obtain the best routing path among nodes is yet an interesting subject. In this article, we present a multi-objective multi-hop routing (MOMHR) protocol for optimal data routing to gain the network lifetime. In the first phase, the K-means algorithm is applied to split the nodes into k clusters. Next, the artificial bee colony optimisation algorithm is applied to obtain the best possible CH within each cluster then using a multi-objective functions finally the multi-hop routing protocol finds a multihop path with minimum communication cost from the node to the base station. Our proposed method is simulated in MATLAB platform and compared with two recent protocols such as low energy adaptive clustering hierarchy and energy efficient centroid-based routing protocol. The execution of the proposed MOMHR protocols using multi-objective function is evaluated using metrics such as energy efficiency and network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced developed distributed energy-efficient clustering for heterogeneous wireless sensor networks. Procedia Computer Science,19, 914–919.

    Article  Google Scholar 

  2. Hammoudeh, M., & Newman, R. (2015). Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Information Fusion,22, 3–15.

    Article  Google Scholar 

  3. Karvonen, H., Suhonen, J., Petäjäjärvi, J., Hämäläinen, M., Hännikäinen, M., & Pouttu, A. (2014). Hierarchical architecture for multi-technology wireless sensor networks for critical infrastructure protection. Wireless Personal Communications,76(2), 209–229.

    Article  Google Scholar 

  4. Maleki, S., Sawhney, R., Farvaresh, H., & Sepehri, M. M. (2014). Energy efficient hybrid wired-cum-wireless sensor network design. Journal of Cleaner Production,85, 408–418.

    Article  Google Scholar 

  5. Bandral, M. S., & Jain, S. (2014). Energy efficient protocol for wireless sensor network. In M. He (Ed.), Recent advances and innovations in engineering (ICRAIE) (pp. 1–6). New York: IEEE.

    Google Scholar 

  6. Raja, K. S., & Kiruthika, U. (2015). An energy efficient method for secure and reliable data transmission in wireless body area networks using RelAODV. Wireless Personal Communications,83(4), 2975–2997.

    Article  Google Scholar 

  7. Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy efficient direction-based PDORP routing protocol for WSN. IEEE Access,4, 3182–3194.

    Article  Google Scholar 

  8. Maddali, B. K. (2015). Core network supported multicast routing protocol for wireless sensor networks. IET Wireless Sensor Systems,5(4), 175–182.

    Article  Google Scholar 

  9. Saleem, K., Fisal, N., & Al-Muhtadi, J. (2014). Empirical studies of bio-inspired self-organized secure autonomous routing protocol. IEEE Sensors Journal,14(7), 2232–2239.

    Article  Google Scholar 

  10. Huynh, T.-T., Dinh-Duc, A.-V., & Tran, C.-H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks,18(4), 580–588.

    Article  Google Scholar 

  11. Soleimani, M., Bhuiyan, M., Gregor, M., & Kerslake, R. (2016). RF channel modeling and multi-hop routing for wireless sensor networks located on oil rigs. IET Wireless Sensor Systems,6, 173–179.

    Article  Google Scholar 

  12. Zhang, D., Song, X. D., Wang, X., & Ma, Y.-Y. (2015). Extended AODV routing method based on distributed minimum transmission (DMT) for WSN. AEU-International Journal of Electronics and Communications,69(1), 371–381.

    Article  Google Scholar 

  13. Ramya, R., Saravanakumar, G., & Ravi, S (2016). Energy harvesting in wireless sensor networks. In S. S. Dash (Ed.) Artificial intelligence and evolutionary computations in engineering systems (pp. 841–853). New Delhi: Springer India.

    Chapter  Google Scholar 

  14. Bao, F., Chen, R., Chang, M. J., & Cho, J.-H. (2012). Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection. IEEE Transactions on Network and Service Management,9(2), 169–183.

    Article  Google Scholar 

  15. Yu, Y., Li, K., Zhou, W., & Li, P. (2012). Trust mechanisms in wireless sensor networks attack analysis and countermeasures. Journal of Network and computer Applications,35(3), 867–880.

    Article  Google Scholar 

  16. Yuan, Z., Han, Z., Sun, Y. L., Li, H., & Song, J. B. (2013). Routing-toward-primary-user attack and belief propagation-based defense in cognitive radio networks. IEEE Transactions on Mobile Computing,12(9), 1750–1760.

    Article  Google Scholar 

  17. Mahmoud, M. M. E. A., & Shen, X. (2012). A cloud-based scheme for protecting source-location privacy against hotspot-locating attack in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems,23(10), 1805–1818.

    Article  Google Scholar 

  18. Turkanović, M., Brumen, B., & Hölbl, M. (2014). A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion. Ad Hoc Networks,20, 96–112.

    Article  Google Scholar 

  19. Ruj, S., Nayak, A., & Stojmenovic, I. (2013). Pairwise and triple key distribution in wireless sensor networks with applications. IEEE Transactions on Computers,62(11), 2224–2237.

    Article  MathSciNet  MATH  Google Scholar 

  20. Shim, K.-A. (2014). S2 DRP secure implementations of distributed reprogramming protocol for wireless sensor networks. Ad Hoc Networks,19, 1–8.

    Article  Google Scholar 

  21. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H (2000 January). Energy-efficient communication protocol for wireless sensor networks. In Proceeding if the 33rd annual Hawaii international conference on system sciences 4–7. Cambridge, MA.

  22. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.

    Article  Google Scholar 

  23. Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing,30, 151–165.

    Article  Google Scholar 

  24. Magaia, N., Horta, N., Neves, R., Pereira, P. R., & Correia, M. (2015). A multi-objective routing algorithm for wireless multimedia sensor networks. Applied Soft Computing,30, 104–112.

    Article  Google Scholar 

  25. Sun, Z., Zhang, Y., Nie, Y., Wei, W., Lloret, J., & Song, H. (2017). CASMOC: A novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks. Wireless Networks,23(4), 1201–1222.

    Article  Google Scholar 

  26. Jain, S. (2018). MLBC: Multi-objective load balancing clustering technique in wireless sensor networks. Applied Soft Computing,74, 66–89.

    Google Scholar 

  27. Kaswan, A., Singh, V., & Jana, P. K. (2018). A multi-objective and PSO based energy efficient path design for mobile sink in wireless sensor networks. Pervasive and Mobile Computing,46, 122–136.

    Article  Google Scholar 

  28. Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2015). Wireless sensor network optimization: Multi-objective paradigm. Sensors,15(7), 17572–17620.

    Article  Google Scholar 

  29. Mann, P. S., & Singh, S. (2017). Artificial bee colony metaheuristic for energy-efficient clustering and routing in wireless sensor networks. Soft Computing,21(22), 6699–6712.

    Article  Google Scholar 

  30. Jena, R. K. (2014). Artificial bee colony algorithm based multi-objective node placement for wireless sensor network. International Journal of Information Technology and Computer Science (IJITCS),6(6), 25–32.

    Article  MathSciNet  Google Scholar 

  31. Sarkar, A., & Murugan, T. S. (2017). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks,25, 1–18.

    Google Scholar 

  32. Taruna, S., Kumawat, R., & Purohit, G. N. (2012). Multi-hop clustering protocol using gateway nodes in wireless sensor network. International Journal of Wireless and Mobile Networks,4(4), 169.

    Article  Google Scholar 

  33. Shukla, S., & Naganna, S. (2014). A review on K-means data clustering approach. International Journal of Information and Computation Technology,4(17), 1847–1860.

    Google Scholar 

  34. Wazid, M., & Das, A. K. (2016). An efficient hybrid anomaly detection scheme using K-means clustering for wireless sensor networks. Wireless Personal Communications,90(4), 1971–2000.

    Article  Google Scholar 

  35. Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on Computing,28(2), 652–673.

    Article  MathSciNet  MATH  Google Scholar 

  36. Coello, C. A. C., Lamont, G. B., & Veldhuisen, D. A. V. (2001). Evolutionary algorithms for solving multi-objective problems. Berlin: Springer.

    Google Scholar 

  37. Subramanian, G., Ahmed, Z., Okelola, N., & Murugan, A. (2015). LEACH protocol based design for effective energy utilization in wireless sensor networks. In 2015 International conference on science and technology (TICST) (pp. 385–389). New York: IEEE.

  38. Leu, J.-S., Chiang, T.-H., Yu, M.-C., & Su, K.-W. (2015). Energy efficient clustering scheme for prolonging the lifetime of wireless sensor network with isolated nodes. IEEE Communications Letters,19(2), 259–262.

    Article  Google Scholar 

  39. Jia, J., Chen, J., Chang, G., Wen, Y., & Song, J. (2009). Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius. Computers and Mathematics with Applications,57, 1767–1775.

    Article  MathSciNet  MATH  Google Scholar 

  40. Razzaque, M. A., Hong, C. S., & Lee, S. (2011). Data-centric multiobjective QoS-aware routing protocol for body sensor networks. Sensors,11, 917–937.

    Article  Google Scholar 

  41. Yang, E., Erdogan, A. T., Arslan, T., & Barton, N. H. (2011). Multi-objective evolutionary optimizations of a space-based reconfigurable sensor network under hard constraints. Soft Computing,15(1), 25–36.

    Article  Google Scholar 

  42. Liu, W., Qin, G., Li, S., He, J., & Zhang, X. (2015). A multiobjective evolutionary algorithm for energy-efficient cooperative spectrum sensing in cognitive radio sensor network. International Journal of Distributed Sensor Networks,11(5), 581589.

    Article  Google Scholar 

  43. Özdemir, S., Bara’a, A. A., & Khalil, Ö. A. (2013). Multi-objective evolutionary algorithm based on decomposition for energy efficient coverage in wireless sensor networks. Wireless Personal Communications,71(1), 195–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vinodhini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author, R. Vinodhini states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinodhini, R., Gomathy, C. MOMHR: A Dynamic Multi-hop Routing Protocol for WSN Using Heuristic Based Multi-objective Function. Wireless Pers Commun 111, 883–907 (2020). https://doi.org/10.1007/s11277-019-06891-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06891-0

Keywords