Skip to main content
Log in

Novel Computational Heuristics for Wireless Parameters Estimation in Bistatic Radar systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Research in the field of bistatic radars have growing interest with exclusive importance in defence sector, aerospace industry, remote sensing, meteorological and navigation applications. In this work, joint wireless parameters of electromagnetic plane waves impinging on the receiver of bistatic radar are estimated by exploiting the efficacy of bio-inspired heuristics through backtracking search optimization algorithm (BSA). The wireless parameters, the amplitude, elevation and azimuth angles, are estimated form the data received on 1-L and 2-L structured antenna arrays deployed on the receiver of bistatic radar. Mean square error is a performance metric incorporated for fitness evaluation, constructed on the basis of difference between the desired and actual responses of the system. Monte Carlo simulations of the meta-heuristic algorithm BSA are performed for 1-L as well as 2-L structured antenna arrays to validate and verify the worth of the scheme in terms of estimation accuracy, reliability, robustness and proximity effect. Comparative study of BSA with state of art counterparts further demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liao, B., Guo, C., Huang, L., Li, Q., & So, H. C. (2017). Robust adaptive beamforming with precise main beam control. IEEE Transactions on Aerospace and Electronic Systems,53(1), 345–356.

    Article  Google Scholar 

  2. Yang, Z., & Xie, L. (2017). On gridless sparse methods for multi-snapshot direction of arrival estimation. Circuits, Systems, and Signal Processing,36(8), 3370–3384.

    Article  MATH  Google Scholar 

  3. Namitha, A. S., & Sameer, S. M. (2017). An improved selective mapping technique to reduce peak-to-average power ratio in SISO and SIMO OFDM systems without side information. Circuits, Systems, and Signal Processing,36(10), 4181–4206.

    Article  MATH  Google Scholar 

  4. Hongmei, Z., Zhenguo, G., & Fu, H. (2013). A high resolution random linear SONAR array based MUSIC method for underwater DOA estimation. In Proceedings of the IEEE 32nd Chinese control conference (pp. 4592–4595), Xian, China.

  5. Bin, Y., Feng, H., Jin, J., Huagang, X., & Guanghan, X. (2014). DOA estimation for attitude determination on communication satellites. Chinese Journal of Aeronautics,27(3), 670–677.

    Article  Google Scholar 

  6. Zhang, X., Xu, L., Xu, L., & Xu, D. (2010). Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Communications Letters,14(12), 1161–1163.

    Article  Google Scholar 

  7. Jia-jia, J., Fa-jie, D., & Xian-quan, W. (2016). An efficient classification method of mixed sources. IEEE Sensors Journal,16(10), 3731–3734.

    Article  Google Scholar 

  8. Akbar, S., et al. (2017). Design of bio-inspired heuristic techniques hybridized with sequential quadratic programming for joint parameters estimation of electromagnetic plane waves. Wireless Personal Communications,96(1), 1475–1494.

    Article  Google Scholar 

  9. Wang, K., Wang, L., Shang, J. R., & Qu, X. X. (2016). Mixed near-field and far field source localization based on uniform linear array partition. IEEE Sensors Journal,16(22), 8083–8090.

    Google Scholar 

  10. Cui, K., Wu, W., Huang, J., Chen, X., & Yuan, N.-C. (2017). 2-d DOA estimation of LFM signals for UCA based on time-frequency multiple invariance ESPRIT. Progress in Electromagnetics Research M,53, 153–165.

    Article  Google Scholar 

  11. Zheng, W., Zhang, X., & Zhai, H. (2017). A generalized coprime planar array geometry for two-dimensional DOA estimation. IEEE Communications Letters,25(5), 1075–1078.

    Article  Google Scholar 

  12. Liu, S., Yang, L., Li, D., & Cao, H. (2017). Subspace extension algorithm for 2D DOA estimation with L-shaped sparse array. Multidimensional Systems and Signal Processing,28(1), 315–327.

    Article  MATH  Google Scholar 

  13. Tayem, N. A. H. M. (2005). Direction of arrival angle estimation schemes for wireless communications systems. Ph.D. dissertation. Wichita State University, Wichita, KS, USA.

  14. Kedia, V. S., & Chandna, B. (1997). A new algorithm for 2-D DOA estimation. Signal Processing,60(3), 325–332.

    Article  MATH  Google Scholar 

  15. Wu, Y., Liao, G., & So, H. C. (2003). A fast Algorithm for 2-D DOA Estimation. Signal Processing,83(8), 1827–1831.

    Article  MATH  Google Scholar 

  16. Tayem, N., & Kwon, H. M. (2005). L-shape 2-D arrival angle estimation with propagator method. IEEE Transactions on Antennas and Propagation,53(5), 1622–1630.

    Article  Google Scholar 

  17. Raja, M. A. Z., Manzar, M. A., Shah, F. H., & Shah, F. H. (2018). Intelligent computing for Mathieu’s systems for parameter excitation, vertically driven pendulum and dusty plasma models. Applied Soft Computing,62, 359–372.

    Article  Google Scholar 

  18. Majeed, K., et al. (2017). A genetic algorithm optimized Morlet wavelet artificial neural network to study the dynamics of nonlinear Troesch’s system. Applied Soft Computing,56, 420–435.

    Article  Google Scholar 

  19. Ahmad, I., et al. (2016). Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus,5(1), 1866.

    Article  Google Scholar 

  20. Ahmad, I., et al. (2017). Neural network methods to solve the Lane–Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Computing and Applications,28(1), 929–944.

    Article  Google Scholar 

  21. Khan, J. A., et al. (2015). Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory. Connection Science,27(4), 377–396.

    Article  Google Scholar 

  22. Raja, M. A. Z., Samar, R., Haroon, T., & Shah, S. M. (2015). Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery–Hamel problem. Applied Mathematics and Mechanics,36(12), 1611–1638.

    Article  MathSciNet  Google Scholar 

  23. Raja, M. A. Z., & Samar, R. (2014). Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing,124, 178–193.

    Article  Google Scholar 

  24. Raja, M. A. Z., Shah, F. H., Alaidarous, E. S., & Syam, M. I. (2017). Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Applied Soft Computing,52, 605–629.

    Article  Google Scholar 

  25. Raja, M. A. Z., Shah, F. H., & Syam, M. I. (2017). Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Computing and Applications, 30(12), 3651–3675.

    Article  Google Scholar 

  26. Raja, M. A. Z., Samar, R., Alaidarous, E. S., & Shivanian, E. (2016). Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Applied Mathematical Modelling,40(11), 5964–5977.

    Article  MathSciNet  MATH  Google Scholar 

  27. Masood, Z., et al. (2017). Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems. Neurocomputing,221, 1–14.

    Article  Google Scholar 

  28. Raja, M. A. Z. (2014). Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connection Science,26(3), 195–214.

    Article  MathSciNet  Google Scholar 

  29. Ahmad, I., Ahmad, F., Raja, M. A. Z., Ilyas, H., Anwar, N., & Azad, Z. (2018). Intelligent computing to solve fifth-order boundary value problem arising in induction motor models. Neural Computing and Applications, 29(7), 449–466.

    Article  Google Scholar 

  30. Raja, M. A. Z., Shah, A. A., Mehmood, A., Chaudhary, N. I., & Aslam, M. S. (2016). Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Computing and Applications, 1–20.

  31. Jia, Y., Chen, C., Zhong, X., & Guo, Y. (2018). Pseudo-beam-forming for direction-of-arrival estimation with difference co-array of co-prime array. Circuits, Systems, and Signal Processing, 1–26.

  32. Yang, J., Yang, Y., Liao, G., & Lei, B. (2017). A super-resolution direction of arrival estimation algorithm for coprime array via sparse bayesian learning inference. Circuits, Systems, and Signal Processing, 1–28.

  33. Lee, J. H., Cho, S. W., Jeong, S. H., & Lee, E. K. (2016). Statistical distribution of difference of the maximum-likelihood angle-of-arrival spectra. Circuits, Systems, and Signal Processing,35(5), 1705–1727.

    Article  MATH  Google Scholar 

  34. Raja, M. A. Z., Aslam, M. S., Chaudhary, N. I., Nawaz, M., & Shah, S. M. (2019). Design of hybrid nature-inspired heuristics with application to active noise control systems. Neural Computing and Applications, 31(7), 2563–2591.

    Article  Google Scholar 

  35. Meng, M., Li, B., & Feng, J. E. (2015). Controllability and observability of singular Boolean control networks. Circuits, Systems, and Signal Processing,34(4), 1233–1248.

    Article  MathSciNet  MATH  Google Scholar 

  36. Khan, N. A., & Ali, S. (2018). Sparsity-aware adaptive directional time-frequency distribution for source localization. Circuits, Systems, and Signal Processing,37(3), 1223–1242.

    Article  MathSciNet  Google Scholar 

  37. Venkataramana, D., Sanyal, S. K., & Misra, I. S. (2016). Digital signal processor-based broad null beamforming for interference reduction. Circuits, Systems, and Signal Processing,35(1), 211–231.

    Article  MathSciNet  MATH  Google Scholar 

  38. Zameer, A., et al. (2017). Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Conversion and Management,134, 361–372.

    Article  Google Scholar 

  39. Raja, M. A. Z., Khan, J. A., & Haroon, T. (2015). Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. Journal of the Taiwan Institute of Chemical Engineers,48, 26–39.

    Article  Google Scholar 

  40. Raja, M. A. Z., Ahmed, T., & Shah, S. M. (2017). Intelligent computing strategy to analyze the dynamics of convective heat transfer in MHD slip flow over stretching surface involving carbon nanotubes. Journal of the Taiwan Institute of Chemical Engineers,80, 935–953.

    Article  Google Scholar 

  41. Raja, M. A. Z., Ahmed, U., Zameer, A., Kiani, A. K., & Chaudhary, N. I. (2019). Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem. Neural Computing and Applications, 31(1), 447–475.

    Article  Google Scholar 

  42. Ahmad, I., et al. (2018). Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. The European Physical Journal Plus,133(5), 184.

    Article  Google Scholar 

  43. Raja, M. A. Z., Shah, Z., Manzar, M. A., Ahmad, I., Awais, M., & Baleanu, D. (2018). A new stochastic computing paradigm for nonlinear Painlevé II systems in applications of random matrix theory. The European Physical Journal Plus,133(7), 254.

    Article  Google Scholar 

  44. Ara, A., et al. (2018). Wavelets optimization method for evaluation of fractional partial differential equations: An application to financial modelling. Advances in Difference Equations,2018(1), 8.

    Article  MathSciNet  MATH  Google Scholar 

  45. Kabalci, Y. (2016). On the Nakagami-m inverse cumulative distribution function: Closed-form expression and its optimization by backtracking search optimization algorithm. Wireless Personal Communications,91(1), 1–8.

    Article  Google Scholar 

  46. Wang, T., & Wang, M. (2018). Parameter setting of load forecasting model for adjacent base stations of mobile communication based on particle swarm optimization. Wireless Personal Communications,102(2), 1057–1071.

    Article  Google Scholar 

  47. Jayanthi, N., & Valluvan, K. R. (2018). Bio-inspired optimization routing technique using DNA sequencing algorithm for wireless sensor networks. Wireless Personal Communications,101(4), 2365–2381.

    Article  Google Scholar 

  48. Dhaliwal, B. S., & Pattnaik, S. S. (2017). Development of PSO-ANN ensemble hybrid algorithm and its application in compact crown circular fractal patch antenna design. Wireless Personal Communications,96(1), 135–152.

    Article  Google Scholar 

  49. Sarode, P., & Nandhini, R. (2018). Intelligent query-based data aggregation model and optimized query ordering for efficient wireless sensor network. Wireless Personal Communications,100(4), 1405–1425.

    Article  Google Scholar 

  50. Wang, G., Xiao, S., Chen, X., Li, X. (2018). Application of genetic algorithm in automatic train operation. Wireless Personal Communications, 102(2), 1695–1704.

    Article  Google Scholar 

  51. Oduguwa, V., Tiwari, A., & Roy, R. (2005). Evolutionary computing in manufacturing industry: An overview of recent application. Applied Soft Computing,5(3), 281–299.

    Article  Google Scholar 

  52. Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation,219(15), 8121–8144.

    Article  MathSciNet  MATH  Google Scholar 

  53. Sa, A. O., Nedjah, N., & Mourelle, L. M. (2014). Genetic and backtracking search optimization algorithm applied to localisation problems. International Journal of Innovative Computing and Applications,6(3–4), 738–746.

    Google Scholar 

  54. El-Fergany, Attia. (2015). Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. International Journal of Electrical Power and Energy System,64, 1197–1205.

    Article  Google Scholar 

  55. Ishak, R., Mohamed, A., Abdalla, A. N., & Wanik, M. Z. C. (2014). Optimal DG placement and sizing for voltage stability improvement using backtracking search algorithm. In Proceedings of international conference on artificial intelligence, energy and manufacturing engineering (pp. 29–34), Kuala Lumpur, Malaysia.

  56. Mandal, S., Sinha, R. K., & Mittal, K. (2015). Comparative analysis of backtrack search optimization algorithm (BSA) with other evolutionary algorithms for global continuous optimization. International Journal of Computer Science and Information Technologies,6(3), 3237–3241.

    Google Scholar 

  57. Khan, W. U., et al. (2018). Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems. Applied Soft Computing,73, 666–683.

    Article  Google Scholar 

  58. Guney, K., Durmus, A., & Basbug, S. (2014). Backtracking search optimization algorithm for synthesis of concentric circular antenna arrays. International Journal of Antennas and Propagation 2014, 1–11, Article ID 250841.

  59. Zaman, F. (2017). Joint angle-amplitude estimation for multiple signals with L-structured arrays using bioinspired computing. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2017/9428196.

    Article  Google Scholar 

  60. Couceiro, M. S., Rocha, R. P., Ferreira, N. F., & Machado, J. T. (2012). Introducing the fractional-order Darwinian PSO. Signal, Image and Video Processing,6(3), 343–350.

    Article  Google Scholar 

  61. Raja, M. A. Z., Samar, R., Manzar, M. A., & Shah, S. M. (2017). Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation. Mathematics and Computers in Simulation,132, 139–158.

    Article  MathSciNet  Google Scholar 

  62. Lodhi, S., Manzar, M. A., & Raja, M. A. Z. (2017). Fractional neural network models for nonlinear Riccati systems. Neural Computing and Applications, 31(1), 359–378.

    Google Scholar 

  63. Couceiro, M. S., Machado, J. T., Rocha, R. P., & Ferreira, N. M. (2012). A fuzzified systematic adjustment of the robotic Darwinian PSO. Robotics and Autonomous Systems,60(12), 1625–1639.

    Article  Google Scholar 

  64. Wang, Y.-Y., Zhang, H., Qiu, C.-H., & Xia, S.-R. (2018). A novel feature selection method based on extreme learning machine and fractional-order Darwinian PSO. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2018/5078268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study

Research involving Human Participants and/or Animal

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, F., Hassan, A., Akbar, S. et al. Novel Computational Heuristics for Wireless Parameters Estimation in Bistatic Radar systems. Wireless Pers Commun 111, 909–927 (2020). https://doi.org/10.1007/s11277-019-06892-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06892-z

Keywords

Navigation