Skip to main content
Log in

Optimal Sensing and Transmission of Energy Efficient Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The issue of spectrum scarcity can be alleviated by the cognitive radio technology with efficient spectrum sensing and allocation of free spectrum bands. In Cognitive Radio Networks energy efficiency improvement is the state of art now days. This paper considers the case of primary user protection from cognitive user transmission to optimize the energy efficiency. The parameters of optimal design problem are sensing, transmission time and transmission power. A Sub Optimal Iterative Search Algorithm is proposed to maximize efficiency by optimizing sensing time and transmitting time. Simulation results exhibits substantial improvement in energy efficiency compared to the recent algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communication Magazine,6(4), 13–18.

    Article  Google Scholar 

  2. Kaur, K., Rattan, M., & Patterh, M. S. (2013). Optimization of cognitive radio system using simulated annealing. Wireless Personal Communications,71(2), 1283–1296.

    Article  Google Scholar 

  3. Zhao, N., Li, S., & Wu, Z. (2012). Cognitive radio engine design based on ant colony optimization. Wireless Personal Communications,65(1), 15–24.

    Article  Google Scholar 

  4. Awasthi, M., Kumar, V., & Nigam, M. J. (2017). Energy—efficiency techniques in cooperative spectrum sensing: A survey. Proceedings of IEEE Computational Intelligence and Communication Technology (CICT). https://doi.org/10.1109/CIACT.2017.7977341.

    Article  Google Scholar 

  5. Lundén, J., Koivunen, V., & Poor, H. (2015). Spectrum exploration & exploitation for cognitive radio [Recent advances]. IEEE Signal Processing Magazines. https://doi.org/10.1109/MSP.2014.2338894.

    Article  Google Scholar 

  6. Sharma, S. K., Bogale, T. E., Chatzinotas, S., Ottersten, B., et al. (2015). Cognitive radio techniques under practical imperfections: A survey. IEEE Communication Surveys & Tutorials,17(4), 1858–1884.

    Article  Google Scholar 

  7. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications,23(2), 201–220.

    Article  Google Scholar 

  8. Lu, L., Zhou, X., Onunkwo, U., & Li, G. Y. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journals on Wireless Communication and Networking,28, 1–16.

    Google Scholar 

  9. Wu, Y., & Tsang, D. H. K. (2011). Energy-efficient spectrum sensing and transmission for cognitive radio system. IEEE Communication Letters,15(5), 545–547.

    Article  Google Scholar 

  10. Shi, Z., Teh, K. C., & Li, K. H. (2013). Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Communication Letters,17(3), 565–568.

    Article  Google Scholar 

  11. Awasthi, M., Nigam, M. J., & Kumar, V. (2017). Energy efficient hard decision fusion rules for fading and non-fading environment. In proceedings of the 2017 IEEE Region 10 Conference (TENCON), Malaysia, 2056-2060. https://doi.org/10.1109/tencon.2017.8228199.

  12. Monemian, M., Mahdavi, M., & Omidi, M. J. (2016). Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio networks. IEEE Sensors Journal,16(6), 1829–1841.

    Article  Google Scholar 

  13. Awin, F. A., Abdel-Raheem, E., & Ahmadi, M. (2017). Joint optimal transmission power and sensing time for energy efficient spectrum sensing in cognitive radio networks. IEEE Sensors Journal,17(2), 369–376.

    Article  Google Scholar 

  14. Ergul, O., & Akan, O. B. (2013). Energy-efficient cooperative spectrum sensing for cognitive radio sensor networks. In IEEE symposium of computer and communication (ISCC) (pp. 465–469).

  15. Peh, E. C. Y., Liang, Y. C., Guan, Y. L., & Pei, Y. (2011). Energy-efficient cooperative spectrum sensing in cognitive radio networks. In IEEE global telecommunications conference (GLOBECOM 2011), IEEE.

  16. Wang, Y., Xu, W., Yang, K., & Lin, J. (2012). Optimal energy-efficient power allocation for OFDM-based cognitive radio networks. IEEE Communication Letters,16(9), 1420–1423.

    Article  Google Scholar 

  17. Haddad, M., Hayel, Y., & Habachi, O. (2015). Spectrum coordination in energy-efficient cognitive radio networks. IEEE Transaction on Vehicular Technology,64(5), 2112–2122.

    Article  Google Scholar 

  18. Awin, F. A., Abdel-Raheem, E., & Ahmadi, M. (2016). Designing an optimal energy efficient cluster-based spectrum sensing for cognitive radio networks. IEEE Communications Letters,20(9), 1884–1887.

    Article  Google Scholar 

  19. Hojjati, S. H., Ebrahimzadeh, A., Najimi, M., & Reihanian, A. (2016). Sensor selection for cooperative spectrum sensing in multi antenna sensor networks based on convex optimization and genetic algorithm. IEEE Sensors Journal,16(10), 3486–3487.

    Article  Google Scholar 

  20. Li, L., Zhou, X., Xu, H., Li, Y., et al. (2011). Energy-efficient transmission in cognitive radio networks. IEEE Transactions on Broadcasting,57(3), 718–720.

    Article  Google Scholar 

  21. Zarrin, S., & Teng, J. L. (2011). Throughput-sensing trade off of cognitive radio networks based on quickest sensing. In Proceedings of IEEE international conference on communications (pp. 1–5).

  22. Pei, Y., Liang, Y. C., Teh, K. C., & Li, K. H. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communication,29(8), 1648–1659.

    Article  Google Scholar 

  23. Awasthi, M., Nigam, M. J., & Kumar, V. (2019). Optimal sensing, fusion and transmission with primary user protection for energy-efficient cooperative spectrum sensing in CRNs. International Journal of Electronics and Communication (AEU),98(2019), 95–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Awasthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, M., Nigam, M.J. & Kumar, V. Optimal Sensing and Transmission of Energy Efficient Cognitive Radio Networks. Wireless Pers Commun 111, 1283–1294 (2020). https://doi.org/10.1007/s11277-019-06914-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06914-w

Keywords