Skip to main content
Log in

Fair Adaptive Cross-Layer Resource Allocation Scheme for IEEE 802.16 Broadband Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In a WiMAX network, the Medium Access Control (MAC) protocol deals with resource allocation to different types of traffic. The key components that ensure Quality of Service (QoS) guarantees in a WiMAX network include Call Admission Control (CAC), Bandwidth and Burst allocation. In this Paper, a Cross-layer framework is designed to efficiently allocate resources to various classes of traffic. CAC and Bandwidth allocation are dealt in the MAC layer, while Burst allocation in the PHYsical layer. The predominant goal of this work is to reduce delay and Information Element (IE) overheads by efficiently utilizing the available frame space. The History based CAC (HCAC) proposed in this paper deals with call acceptance based on the Contention Window (CW) values. The History based Bandwidth Allocation (HBA) scheme deals with allocating bandwidth based on Consumption and Equity measures. The proposed tightly coupled Delay Tolerance based Scheduler (DTS) and Bucket based Burst Allocator (BBA) allocate resources by prioritizing flows with least delay tolerance. It is seen that the proposed schemes offer better performance in contrast to the existing benchmarked schemes in terms of Throughput, Average Delay and Packet Loss Ratio (PLR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qassem, Y. A., Al-Hemyari, A., Ng, C., Noordin, N., & Rasid, M. (2009). Review of network routing in IEEE 802.16 WiMAX mesh networks. Australian Journal of Basic and Applied Sciences, 3(4), 3980–3996.

    Google Scholar 

  2. Ohrtman, F. (2005). WiMAX handbook. McGraw-Hill, Inc. ISBN: 0-07-145401-2.

  3. Munoz, R. J., & Guice, R. J. (2004). IEEE 802.16 commercial off the shelf (cots) technologies as a compliment to ship to objective maneuver (stom) communications. Doctoral dissertation. Naval Postgraduate School, Monterey, California.

  4. Omiyi, P., Haas, H., & Auer, G. (2007). Analysis of TDD cellular interference mitigation using busy-bursts. IEEE Transactions on Wireless Communications, 6(7), 2721–2731.

    Article  Google Scholar 

  5. Chaudhry, S. B., & Guha, R. K. (2007). Adaptive connection admission control and packet scheduling for QoS provisioning in mobile WiMAX. In Proceedings of IEEE international conference on signal processing and communications (pp. 1355–1358).

  6. De Rango, F., & Malfitano, A. (2009). Bandwidth availability aware defragmentation based CAC algorithm for IEEE 802.16 distributed mesh networks. In Proceedings of IEEE international symposium on performance evaluation of computer & telecommunication systems (Vol. 41, pp. 146–153).

  7. Antonopoulos, A., Skianis, C., & Verikoukis, C. (2010). Traffic-aware connection admission control scheme for broadband mobile systems. In Proceedings of IEEE global telecommunications conference (pp. 1–5).

  8. Lakshmanan, M., Mohammed, V. N., & Nandakumar, S. (2009). QoS provisioning for mobile and fixed wireless real time multimedia services. In Proceedings of IEEE international conference on internet multimedia services architecture and applications (pp. 1–6).

  9. Saddoud, A., Chaari, L. F., & Kamoun, L. (2010). Admission control scheme and bandwidth allocation for mobile WiMAX networks. In Proceedings of 7th IEEE international conference on informatics and systems (pp. 1–5).

  10. Kapoor, A., & Ribeiro, V. J. (2010). An end-to-end QoS aware greedy distributed scheduling framework for WiMAX mesh networks. In Proceedings of 2nd IEEE international conference on communication systems and networks (pp. 1–8).

  11. Bae, Y. H., Park, J. S., & Choi, B. D. (2010). Admission control scheme for voice calls guaranteeing both packet-level QoS and call-level QoS in IEEE 802.16e. In Proceedings of 72nd IEEE vehicular technology conference-fall (pp. 1–5).

  12. Nasser, N., Miller, R., Esmailpour, A., & Taha, A. E. M. (2011). Utility optimized bandwidth allocation in WiMAX networks. In Proceedings of 7th IEEE international wireless communications and mobile computing conference (pp. 540–545).

  13. Rengaraju, P., Lung, C. H., & Srinivasan, A. (2012). Adaptive admission control and packet scheduling schemes for QoS provisioning in multihop WiMAX networks. In Proceedings of 8th IEEE international wireless communications and mobile computing conference (pp. 866–871).

  14. Dosciatti, E. R., Godoy, W., & Foronda, A. (2012). An efficient approach of scheduling with call admission control to fixed WiMAX networks. IEEE Latin America Transactions, 10(1), 1256–1264.

    Article  Google Scholar 

  15. Gupta, A., & Chandavarkar, B. R. (2012). An efficient bandwidth management algorithm for WiMAX (IEEE 802.16) wireless network: EBM allocation algorithm. In Proceedings of 7th IEEE international conference on industrial and information systems (pp. 1–5).

  16. Lu, X., Yang, K., Liu, Y., Zhou, D., & Liu, S. (2015). An elastic resource allocation algorithm enabling wireless network virtualization. Wireless Communications and Mobile Computing, 15(2), 295–308.

    Google Scholar 

  17. Pizzi, S., Molinaro, A., & Araniti, G. (2015). Radio-aware resource allocation architecture for QoS differentiation in WiMAX networks. Wireless Networks, 21(8), 2711–2726.

    Article  Google Scholar 

  18. Lemeshko, A. V., Al-Janabi, H. D., & Al-Dulaimi, A. M. K. (2015). Model progress of subchannel distribution in WiMAX antenna system. In Proceedings of IEEE international conference on antenna theory and techniques (pp. 1–3).

  19. Kahlon, K. S., & Kaushal, M. (2016). Analysis of a queue length aware and latency guaranteed fuzzy-based adaptive resource allocator for WiMAX networks. Optik, 127(1), 357–367.

    Article  Google Scholar 

  20. Afzali, M., AbuBakar, K., Lloret, J. (2019). Adaptive resource allocation for WiMAX mesh network. Wireless Personal Communications, 107(2), 849–867

    Article  Google Scholar 

  21. Goswami, S., Mukherjee, S., Misra, I. S., Mukherjee, D., & Chakraborty, B. (2019). A novel hybrid resource allocation scheme for maximum fairness among multiple services. In Proceedings of 2nd IEEE international conference on microelectronics, computing & communication systems (pp. 545–561). Singapore: Springer.

  22. Naik, D., Dora, S., & De, T. (2019). Normalized uplink bandwidth scheduling algorithm for WiMAX networks. In Proceedings of conference on advances in computer, communication and control (pp. 311–325). Springer: Singapore.

  23. Ohseki, T., & Inoue, T. (2008). Proposal for radio resource allocation using dummy burst definition in IEEE 802.16 uplinks. In Proceedings of IEEE wireless communications and networking conference (pp. 1211–1216).

  24. So-In, C., Jain, R., & Al Tamimi, A. K. (2009). OCSA: An algorithm for burst mapping in IEEE 802.16 e mobile WiMAX networks. In Proceedings of 15th IEEE Asia-pacific conference on communications (pp. 52–58).

  25. So-In, C., Jain, R., & Al Tamimi, A. K. (2009). eOCSA: An algorithm for burst mapping with strict QoS requirements in IEEE 802.16e mobile WiMAX networks. In Proceedings of 2nd IEEE IFIP wireless days (WD) (pp. 1–5).

  26. Chen, H. C., Shih, K. P., Wang, S. S., & Chiang, C. T. (2010). An efficient downlink bandwidth allocation scheme for improving subchannel utilization in IEEE 802.16e WiMAX networks. In Proceedings of 71st IEEE vehicular technology conference (pp. 1–5).

  27. Shih, K. P., Chen, H. C., Chiang, C. T., & Hsieh, T. H. (2010). Channel-aware subchannel renumbering and downlink burst allocation for IEEE 802.16 OFDMA systems. In Proceedings of IEEE wireless communication and networking conference (pp. 1–6).

  28. Chen, H. C., Shih, K. P., Chiang, C. T., & Chen, C. L. (2011). A subchannel-aware burst fragmentation, packing and scheduling (BFPS) algorithm for downlink traffic in IEEE 802.16 OFDMA systems. In Proceedings of 7th IEEE international wireless communications and mobile computing conference (pp. 1141–1146).

  29. Nusairat, A., & Li, X. Y. (2012). WiMAX/OFDMA burst scheduling algorithm to maximize scheduled data. IEEE Transactions on Mobile Computing, 11(11), 1692–1705.

    Article  Google Scholar 

  30. Baek, J. Y., & Suh, Y. J. (2012). Heuristic burst construction algorithm for improving downlink capacity in IEEE 802.16 OFDMA systems. IEEE Transactions on Mobile Computing, 11(1), 155–168.

    Article  Google Scholar 

  31. Chiang, C. T., & Shih, K. P. (2012). A burst overlapping and scheduling scheme (BOSS) in IEEE 802.16 OFDMA systems. In Proceedings of 4th IEEE international conference on ubiquitous and future networks (ICUFN) (pp. 379–382).

  32. Ali, Z. G., Ahmad, R. B., Yahya, A., Hassnawi, L. A., & Aldhaibani, J. A. (2013). Low complexity burst allocation algorithm with high frame utilization for Mobile WiMAX (802.16e). In Proceedings of IEEE business engineering and industrial applications colloquium (pp. 404–409).

  33. Olexandr, L., & Sergiy, G. (2013). Slot allocation model and data burst scheduling in downlink WiMAX technology. In Proceedings of XXXIII IEEE international scientific conference electronics and nanotechnology (pp. 455–459).

  34. Hailan, A., Al-Janabi, H. D. K., & Hojayev, O. (2015). Research of factors influencing the subchannel allocation to subscriber stations in WiMAX.

  35. Dziyauddin, R. A., Doufexi, A., Kaleshi, D., Sam, S. M., & Mohamed, N. (2016). Performance evaluation of dynamic burst mapping in a WiMAX system. Wireless Personal Communications, 91(3), 1191–1212.

    Article  Google Scholar 

  36. Al-Janabi, H. D., Al-Janabi, H. D., & Hoiavev, O. M. (2016). Formulating and solving problem of priority subchannel allocation in downlink WiMAX. In Proceedings of 13th IEEE international conference on modern problems of radio engineering, telecommunications and computer science (pp. 934–936).

  37. Dorairangaswamy, M. A. (2017). Resource allocation of scheduling algorithm using improved cat swarm optimization in WiMAX networks. Journal of Network Communications and Emerging Technologies, 7(11), 54–59

    Google Scholar 

  38. Chen, Y. H., Jan, P. T., Chen, L. K., Hung, R. Z., & Lee, Y. J. (2019). A MAP overhead aware two-dimensional OFDMA burst construction algorithm. Applied Sciences, 9(2), 354.

    Article  Google Scholar 

  39. Liang, J. M., Chen, J. J., Wang, Y. C., & Tseng, Y. C. (2011). A cross-layer framework for overhead reduction, traffic scheduling, and burst allocation in IEEE 802.16 OFDMA networks. IEEE Transactions on Vehicular Technology, 60(4), 1740–1755.

    Article  Google Scholar 

  40. Esmailpour, A., & Nasser, N. (2011). Dynamic QoS-based bandwidth allocation framework for broadband wireless networks. IEEE Transactions on Vehicular Technology, 60(6), 2690–2700.

    Article  Google Scholar 

  41. Su, R. R., Hwang, I. S., & Hwang, B. J. (2016). A new cross-layer scheme that combines grey relational analysis with multiple attributes and knapsack algorithms for WiMAX uplink bandwidth allocation. EURASIP Journal on Wireless Communications and Networking, 2016(1), 170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deva Priya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deva Priya, M., Sangeetha, M., Christy Jeba Malar, A. et al. Fair Adaptive Cross-Layer Resource Allocation Scheme for IEEE 802.16 Broadband Wireless Networks. Wireless Pers Commun 117, 2645–2666 (2021). https://doi.org/10.1007/s11277-019-06929-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06929-3

Keywords

Navigation