Skip to main content
Log in

Design of Low Power Si0.7Ge0.3 Pocket Junction-Less Tunnel FET Using Below 5 nm Technology

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work proposed the design of low power Si0.7Ge0.3 pocket Junction-less TFET (JLTFET) on bulk silicon using below 5 nm technology. The inclusion of junction-less regions improves ON-state current with lesser effect on OFF-state current. The p-type pocket regions added to improve device performance in subthreshold region showing reduction in OFF-state leakage current leading to good value of ON/OFF current ratio as compared to other similar TFET structures. A high-value ION/IOFF ratio and good subthreshold behavior are observed for pocket JLTFET with 2 nm gate length and body thickness 0.5 nm. The proposed JLTFET is further optimized for different gate contact and oxide materials. The temperature analysis plays major role in deciding a reliable ON-state and OFF-state performance of transistors. So, the proposed pocket JLTFETis investigated for harsh temperature conditions to characterize the performance for DC and AC parameters. The sensitivity of proposed JLTFET is analyzed under different temperature conditions in range of (200–400) K to observe subthreshold performance such as transfer characteristics, Output characteristics and ION/IOFF ratio. The proposed designs for JLTFETs have been simulated using TCAD 2D/3D device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Colinge, J. P. (2008). The new generation of SOI MOSFETs. The Romanian Journal of Information Science and Technology,11(1), 3–15.

    Google Scholar 

  2. Manoj, C. R., Nagpal, M., et al. (2008). Device design and optimization considerations for Bulk FinFETs. IEEE Transactions on Electron Devices,55(2), 609–615.

    Article  Google Scholar 

  3. Tripathi, S. L., Mishra, R., & Mishra, R. A. (2013). High performance Bulk FinFET with bottom spacer. In IEEE CONNECT.

  4. Zhao, H., Yeo, Y.-C., et al. (2008). Analysis of the effects of fringing electric field on FinFET device performance and structural optimization using 3-D simulation. IEEE transactions on Electronics Devices,55(5), 1177–1184.

    Article  Google Scholar 

  5. Nirschl, T., Wang, P.-F. et al. (2004). The tunneling field effect transistor (TFET): The temperature dependence, the simulation model, and its application. IEEE.

  6. Khatami, Y., & Banerjee, K. (2009). Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Transactions on Electron Devices,56(11), 2752–2761.

    Article  Google Scholar 

  7. Avci, U. E., et al. (2012). Understanding the feasibility of scaled III–V TFET for logic by bridging atomistic simulations and experimental results. In Proceedings of the symposium on VLSI technology (VLSIT) (pp. 183–184). Honolulu, HI, USA.

  8. Avci, U. E., Morris, D. H., & Young, I. A. (2014). Tunnel field-effect transistors: Prospects and challenges. IEEE Journal of Electron Device Society, 3(3), 88–95.

    Article  Google Scholar 

  9. Sharma, A., Goud, A. A., & Roy, K. (2015). P-channel tunneling field effect transistor (TFET): Sub-10 nm technology enablement by GaSb–InAs with doped source underlap. In Device research conference (DRC) (pp. 1548–3770). IEEE.

  10. Yang, Z. (2016). Tunnel field-effect transistor withand L-shaped gate. IEEE Electron Device Letters,37(7), 839–842.

    Article  Google Scholar 

  11. Li, W., Liu, H., Wang, S., Chen, S., & Yang, Z. (2017). Design of high performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Research Letters,12(1), 198.

    Article  Google Scholar 

  12. Li, W., Liu, H., Wang, S., & Chen, S. (2017). Reduced miller capacitance in U-shaped channel tunneling FET by introducing heterogeneous gate dielectric. IEEE Electron Device Letters,38(3), 403–406.

    Article  Google Scholar 

  13. Wang, W., Wang, P.-F., et al. (2014). Design of U-shape channel tunnel FETs with SiGe source regions. IEEE Transactions on Electron Devices,61(1), 193–197.

    Article  Google Scholar 

  14. Imenabadi, R. M., Saremi, M., & Vandenberghe, W. G. (2017). A novel PNPN-like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Transactions On Electron Devices,64, 4752–4758.

    Article  Google Scholar 

  15. Saurabh, S., & Kumar, M. J. (2012). Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Transactions on Electron Devices,58, 1023–1029.

    Google Scholar 

  16. Rahi, S. B., Asthana, P., & Gupta, S. (2017). Heterogate junctionless tunnel field-effect transistor: Future of low-power devices. Journal of Computational Electronics,16(1), 30–38.

    Article  Google Scholar 

  17. Sahay, S., & Kumar, M. J. (2016). Controlling L-BTBT and volume depletion in nanowire JLFETs using core–shell architecture. IEEE Transactions on Electron Devices,63(9), 3790–3794.

    Article  Google Scholar 

  18. Kumar, M. J., & Sahay, S. (2016). Controlling BTBT-induced parasitic BJTaction in junctionless FETs using a hybrid channel. IEEE Transactions on Electron Devices,63(8), 3350–3353.

    Article  Google Scholar 

  19. Sahay, S., & Kumar, M. J. (2016). Realizing efficient volume depletion in SOI junctionless FETs. IEEE Journal of the Electron Devices Society,4(3), 110–115.

    Article  Google Scholar 

  20. Lahgere, A., & Kumar, M. J. (2017). A tunnel dielectric-based junctionless transistor with reduced parasitic BJT action. IEEE Transactions on Electron Devices,64, 3470–3475.

    Article  Google Scholar 

  21. Asthana, P. K., Ghosh, B., Rahi, S. B., & Goswami, Y. (2014). Optimal design of high performance H-JLTFET using HfO2 as gate dielectric for ultra low power applications. RSC Advances,4(43), 22803–22807.

    Article  Google Scholar 

  22. Narang, R., Saxena, M., Gupta, R. S., & Gupta, M. (2013). Impact of temperature variations on the device and circuit performance of tunnel FET: A simulation study. IEEE Transactions on Nanotechnology,12, 951–957.

    Article  Google Scholar 

  23. Rao, M., Ranjan, R., Pradhan, K. P., Artola, L., & Sahu, P. K. (2016). Spacer engineered Tri-gate SOI TFET: An investigation towards harsh temperature environment applications. Superlattices and Microstructures,97, 70–77.

    Article  Google Scholar 

  24. Kumar, T. S., & Tripathi, S. L. (2019). Implementation of CMOS SRAM Cells in 7, 8, 10 and 12-transistor topologies and their performance comparison. International Journal of Engineering and Advanced Technology,8, 227–229.

    Article  Google Scholar 

  25. Tripathi, S. L., Patel, R., & Agrawal, V. K. (2019). Low leakage pocket junction-less DGTFET with bio sensing cavity region. Turkish Journal of Electrical Engineering and Computer Sciences,27(4), 2466–2474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Lata Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S.L., Patel, G.S. Design of Low Power Si0.7Ge0.3 Pocket Junction-Less Tunnel FET Using Below 5 nm Technology. Wireless Pers Commun 111, 2167–2176 (2020). https://doi.org/10.1007/s11277-019-06978-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06978-8

Keywords

Navigation