Skip to main content
Log in

Highly-Accurate Fractional-Order Microwave Differentiators for Band-Specific UWB Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Highly accurate designs of band-specific fractional-order microwave differentiators are proposed to operate in lower and upper frequency bands of UWB range. Firstly, fractional-order digital differentiators are obtained by minimizing the magnitude error function of a single-zero multi-pole transfer function. Absolute relative error (ARE) analysis clearly demonstrates that the proposed lower and upper band fractional-order digital differentiator designs are having highly accurate magnitude response and outperform the existing fractional-order differentiators with maximum ARE values of − 44.14 dB and − 48.79 dB respectively. To operate in microwave range, these designs are realized using Z-domain chain scattering parameters of equal-electrical length line elements. Microstrip configurations obtained for lower and upper band fractional-order microwave differentiators consist of a short-circuited shunt stub and three serial transmission line sections. Implementation of designs is done on Rogers RO3003 substrate having thickness 0.75 mm. Measured results for transmission coefficient of lower and upper frequency band designs are found to be in good agreement with simulated ones over the frequency range 1.2 to 6.2 GHz and 6 to 10.9 GHz respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.

    MATH  Google Scholar 

  2. Oldham, K. B., & Spanier, J. (1974). The fractional calculus. New York: Academic Press.

    MATH  Google Scholar 

  3. West, B. J., Bologna, M., & Grigolini, P. (2003). Physics of fractal operators. New York: Springer.

    Book  Google Scholar 

  4. Charef, A. (2006). Analogue realisation of fractional order integrator differentiator and fractional PIλDμ controller. IEE Proceedings of Control Theory Applications,153(6), 714–720.

    Article  Google Scholar 

  5. Varshney, P., Gupta, M., & Visweswaran, G. S. (2008). Implementation of switched capacitor fractional order differentiator (PDδ) circuit. International Journal of Electronics,95(6), 531–547.

    Article  Google Scholar 

  6. Charef, A., & Idiou, D. (2012). Design of analog variable fractional order differentiator and integrator. Nonlinear Dynamics,69(4), 1577–1588.

    Article  MathSciNet  Google Scholar 

  7. Gonzalez, E. A., Dorcak, L., Monje, C. A., Valsa, J., Caluyo, F. S., & Petras, I. (2004). Conceptual design of a selectable fractional-order differentiator for industrial applications. Fractional Calculus and Applied Analysis,17(3), 697–716.

    MATH  Google Scholar 

  8. Chen, Y. Q., & Moore, K. L. (2002). Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,49(3), 363–367.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y. Q., & Vinagre, B. M. (2003). A new IIR-type digital fractional order differentiator. Signal Processing,83(11), 2359–2365.

    Article  MATH  Google Scholar 

  10. Maione, G. (2005). A rational discrete approximation to the operator s 0.5. IEEE Signal Processing Letters,13(3), 141–144.

    Article  Google Scholar 

  11. Tseng, C. C. (2006). Improved design of digital fractional order differentiators using fractional sample delay. IEEE Transactions on Circuits and Systems I: Regular Papers,53(1), 193–203.

    Article  Google Scholar 

  12. Gupta, M., Varshney, P., & Visweswaran, G. S. (2011). Digital fractional-order differentiator and integrator models based on first-order and higher order operators. International Journal of Circuit Theory and Applications,39(5), 461–474.

    Article  Google Scholar 

  13. Romero, M., de Madrid, A. P., Manoso, C., et al. (2013). IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory. ISA Transactions,52(4), 461–468.

    Article  Google Scholar 

  14. Rana, K. P. S., Kumar, V., Garg, Y., & Nair, S. S. (2016). Efficient design of discrete fractional-order differentiators using Nelder–Mead simplex algorithm. Circuits, Systems, and Signal Processing,35(6), 2155–2188.

    Article  Google Scholar 

  15. Kumar, M., & Rawat, T. K. (2015). Optimal design of FIR fractional-order differentiator using cuckoo search algorithm. Expert Systems with Applications,42(7), 3433–3449.

    Article  Google Scholar 

  16. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2017). Optimal and accurate design of fractional order digital differentiator—an evolutionary approach. IET Signal Processing,11(2), 181–196.

    Article  Google Scholar 

  17. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2018). Optimal design of fractional-order digital differentiator using flower pollination algorithm. Journal of Circuits, Systems, and Computers,27(8), 1850129.

    Article  Google Scholar 

  18. Upadhyay, D. K., & Singh, R. K. (2011). Recursive wideband digital differentiator and integrator. Electronics Letters,47(11), 647–648.

    Article  Google Scholar 

  19. Gupta, M., Jain, M., & Kumar, B. (2011). Recursive wideband digital integrator and differentiator. International Journal of Circuit Theory and Applications,39, 775–782.

    Article  Google Scholar 

  20. Jalloul, M. K., & Al-Alaoui, M. A. (2016). Design of recursive digital integrators and differentiators using particle swarm optimization. International Journal of Circuit Theory and Applications,44, 948–967.

    Article  Google Scholar 

  21. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2018). Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft Computing,22(11), 3757–3783.

    Article  Google Scholar 

  22. Hsue, C.-W., Cheng, T.-R., Cheng, H.-M., & Chen, H.-M. (2003). A second-order microwave differentiator. IEEE Microwave and Wireless Components Letters,13(3), 137–139.

    Article  Google Scholar 

  23. Hsue, C.-W., Kuan, M.-C., & Peng, C.-M. (2003). A microwave differentiator. Microwave and Optical Technology Letters,37(3), 226–228.

    Article  Google Scholar 

  24. Hsue, C.-W., Tsai, L.-C., & Chen, K.-L. (2004). Implementation of first-order and second-order microwave differentiators. IEEE Transactions on Microwave Theory and Techniques,52(5), 1443–1447.

    Article  Google Scholar 

  25. Tsai, L.-C., & Wu, Y.-T. (2009). Time-constant control analysis of microwave differentiators. IET Microwaves, Antennas and Propagation,3(7), 1044–1050.

    Article  Google Scholar 

  26. Han, Y., Li, Z., & Yao, J. (2011). A microwave bandpass differentiator implemented based on a nonuniformly-spaced photonic microwave delay-line filter. Journal of Lightwave Technology,29(22), 3470–3475.

    Article  Google Scholar 

  27. Arnedo, I., Arregui, I., Chudzik, M., et al. (2013). Passive microwave component design using inverse scattering: Theory and applications. International Journal of Antennas and Propagation,2013, 761278.

    Article  Google Scholar 

  28. Zhang, Q., Xia, F., Zhang, G., & Chen, Y. (2017). Coupling matrix synthesis of microwave differentiators. IEEE Microwave and Wireless Components Letters,27(10), 879–888.

    Article  Google Scholar 

  29. Lai, M. I., & Jeng, S. K. (2006). Compact microstrip dual-band bandpass filters design using genetic-algorithm technique. IEEE Transactions on Microwave Theory and Technology,54(1), 160–168.

    Article  Google Scholar 

  30. Sanada, H., Ito, H., Takezawa, M., & Watanabe, K. (2007). Design of transmission line filters and matching circuits using genetic algorithms. IEEJ Transactions on Electrical and Electronic Engineering,2(6), 588–595.

    Article  Google Scholar 

  31. Huang, J. F., Wen, J. Y., & Lyu, Z. M. (2008). A triple broadband microwave filter synthesis using nonuniform lines. Microwave and Optical Technology Letters,50(12), 3039–3045.

    Article  Google Scholar 

  32. Vegesna, S., & Saed, M. (2012). Microstrip dual-band bandpass and bandstop filters. Microwave and Optical Technology Letters,54(1), 168–171.

    Article  Google Scholar 

  33. Kant, R., & Gupta, N. (2017). Design and implementation of inverse legendre microstrip filter. Microwave and Optical Technology Letters,59(1), 69–73.

    Article  Google Scholar 

  34. Pozar, D. M. (1998). Microwave engineering. New York: Wiley.

    Google Scholar 

  35. Gupta, M., & Upadhyay, D. K. (2018). Design and implementation of fractional-order microwave differentiator. IET Microwaves, Antennas and Propagation,12(8), 1375–1381.

    Article  Google Scholar 

  36. Chang, D. C., & Hsue, C.-W. (2001). Design and implementation of filters using transfer functions in the z domain. IEEE Transactions on Microwave Theory and Techniques,49(5), 979–985.

    Article  Google Scholar 

  37. Haykin, S. (1996). Adaptive filter theory. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  38. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceeding of world congress on nature and biologically inspired computing (pp. 210–214). USA: IEEE Publications.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridul Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Upadhyay, D.K. Highly-Accurate Fractional-Order Microwave Differentiators for Band-Specific UWB Applications. Wireless Pers Commun 111, 2247–2262 (2020). https://doi.org/10.1007/s11277-019-06984-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06984-w

Keywords

Navigation