Skip to main content
Log in

Design of Novel Dual Input DC–DC Converter for Energy Harvesting System in IoT Sensor Nodes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new DC–DC converter capable of working with more than one source for harvesting energy from clean energy sources is proposed. Key features of this proposed converter are single inductor and reduced total number of components. In addition the converter has reduced stresses and power losses. Dual input and output modes, with its operation and steady-state analysis are discussed. Comparative study of the topologies given in literature with a proposed topology for parameters considered like the number of components and voltage gain is presented. Compatibility of the proposed converter is proved with reduced losses using loss distribution analysis of the converter and it is more reliable for energy system in telecom applications, which is validated using reliability analysis, is also highlighted. Finally, to substantiate the working of the non isolated DC–DC converter considered the test results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., & Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photo voltaic power generation. Renewable and Sustainable Energy Reviews, 41, 284–297.

    Article  Google Scholar 

  2. Mirhassani, S., Ong, H. C., Chong, W. T., & Leong, K. Y. (2015). Advances and challenges in grid tied photovoltaic systems. Renewable and Sustainable Energy Reviews, 49, 121–131.

    Article  Google Scholar 

  3. Khaligh, A., Cao, J., & Lee, Y. J. (2009). A multiple-input DC–DC converter topology. IEEE Transactions on Power Electronics, 24, 862–868.

    Article  Google Scholar 

  4. Kumar, L., & Jain, S. (2013). Multiple-input DC/DC converter topology for hybrid energy system. IET Power Electronics, 6, 1483–1501.

    Article  Google Scholar 

  5. Wu, H., Sun, K., Ding, S., & Xing, Y. (2013). Topology derivation of non-isolated three-port DC–DC converters from DIC and DOC. IEEE Transactions on Power Electronics, 28(7), 3297–3307.

    Article  Google Scholar 

  6. Marchesoni, M., & Vacca, C. (2007). New DC–DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles. IEEE Transactions on Power Electronics, 22, 301–308.

    Article  Google Scholar 

  7. Banaei, M. R., Ardi, H., Alizadeh, R., & Farakhor, A. (2014). Non-isolated multi-input–single-output DC/DC converter for photovoltaic power generation systems. IET Power Electronics, 7, 2806–2816.

    Article  Google Scholar 

  8. Liu, Y.-C., & Chen, Y.-M. (2009). A systematic approach to synthesizing multi-input DC–DC converters. IEEE Transactions on Power Electronics, 24(1), 116–127.

    Article  Google Scholar 

  9. Li, Y., Ruan, X., Yang, D., Liu, F., & Tse, C. K. (2010). Synthesis of multiple input DC/DC converters. IEEE Transactions on Power Electronics, 25(9), 2372–2385.

    Article  Google Scholar 

  10. Zhou, L. W., Zhu, B. X., & Luo, Q. M. (2012). High step-up converter with capacity of multiple input. IET Power Electronics, 5, 524–531.

    Article  Google Scholar 

  11. Farzam, N., Danyali, S., Hosseini, S. H., Sabahi, M., & Niapour, S. M. (2012). Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system. IEEE Transactions on Power Electronics, 27(5), 2309–2324.

    Article  Google Scholar 

  12. Kardan, F., Alizadeh, R., & Banaei, M. R. (2017). A new three input DC/DC converter for hybrid PV/FC/battery applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(4), 1771–1778.

    Article  Google Scholar 

  13. Di Napoli, A., Crescimbini, F., Rodo, S., & Solero, L. (2002). Multiple input DC–DC power converter for fuel-cell powered hybrid vehicles. In 2002 IEEE 33rd annual IEEE power electronics specialists conference. Proceedings (Cat. No. 02CH37289), vol. 4, p. 1685e90.

  14. Gavris, M., Muntean, N., & Cornea, O. (2011). A new dual- input hybrid buck DC–DC converter. In Electrical machines and power electronics and 2011 electromotion joint conference (ACEMP).

  15. Deihimi, A., Mahmoodieh, M. E. S., & Iravani, R. (2017). A new multiinput step-up DC–DC converter for hybrid energy systems. Electric Power System Research, 149, 111e24.

    Article  Google Scholar 

  16. Cheng, K. W. E., & Yuan-mao, Y. (2013). Multi-input voltage-summation converter based on switched-capacitor. IET Power Electronics, 6, 1909–1916.

    Article  Google Scholar 

  17. Hou, S., Chen, J., Sun, T., & Bi, X. (2016). Multi-input step-up converters based on the switched-diode-capacitor voltage accumulator. IEEE Transactions on Power Electronics, 31, 381–393.

    Article  Google Scholar 

  18. Chen, Y. M., Liu, Y. C., & Lin, S. H. (2006). Double-input PWM DC/DC converter for high-/low-voltage sources. IEEE Transactions on Industrial Electronics, 53, 1538–1545.

    Article  Google Scholar 

  19. Gummi, K., & Ferdowsi, M. (2010). Double-input DC–DC power electronic converters for electric-drive vehicles topology exploration and synthesis using a single-pole triple-throw switch. IEEE Transactions on Industrial Electronics, 57, 617e23.

    Article  Google Scholar 

  20. Ray, O., Prasad, J. A., & Mishra, S. (2013). A multi-port DC-DC converter topology with simultaneous buck and boost outputs. In IEEE international symposium on industrial electronics May 2013.

  21. Badstuebner, U., Biela, J., & Kolar, J. W. (2010). An optimized, 99% efficient, 5 kW, phase-shift PWM DC–DC converter for data centers and telecom applications. In Applied power electronics conference and exposition (APEC), 2010 twenty-fifth annual IEEE, 21–25 February 2010, Palm Springs, California, pp. 773–780.

  22. Traore, M., Ndiaye, A., Mbodji, S., Faye, M., Gueye, D., Tankari, M. T., et al. (2018) Supervision of a PV system with storage connected to the power line and design of a battery protection system. Wireless Networks. https://doi.org/10.1007/s11276-018-1886-x.

    Article  Google Scholar 

  23. Rodrguez, J. C., Holmes, D. G., Mcgrath, B., & Wilkinson, R. H. (2018). A self-triggered pulsed-mode flyback converter for electric-field energy harvesting. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(1), 377–386.

    Article  Google Scholar 

  24. Mondal, S., & Paily, R. (2017). Efficient solar power management system for self-powered IoT node. IEEE Transactions on Circuits and Systems I, 64(9), 2359–2369.

    Article  Google Scholar 

  25. Elhebeary, M. R., Ibrahim, M. A. A., Aboudina, M. M., & Mohieldin, A. N. (2018). Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT. IEEE Transactions on Industrial Electronics, 65(1), 342–351.

    Article  Google Scholar 

  26. Banu, J. B., & Moses, M. B. (2018). IOT based augmented perturb-and-observe soft switching boost converters for photovoltaic power systems in smart cities. Wireless Personal Communication. https://doi.org/10.1007/s11277-018-5280-x.

    Article  Google Scholar 

  27. Baraneetharan, E., & Selvakumar, G. (2018). Smart internet of things (IOT) system for performance improvement of dual bridge LLC resonant converter by using sophisticated distribution control method (SDC). Wireless Personal Communication. https://doi.org/10.1007/s11277-018-5510-2.

    Article  Google Scholar 

  28. Navamani, J. D., Jegatheesan, R., & Vijayakumar, K. (2018). Reliability study of high gain DC–DC converters based on RRPP I-IIA configuration for shipboard power system. Sadhana, 43, 71.

    Article  Google Scholar 

  29. Navamani, J. D., Jegatheesan, R., & Vijayakumar, K. (2018). Reliability analysis and SFG modeling of a new modified quadratic boost DC–DC converter. Informacije MIDEM, Journal of Microelectronics, Electronic Components and Materials, 48(1), 3–18.

    Google Scholar 

  30. Greensburg, P. A. (1990). Reliability prediction of electronic equipments. 1990 Relex Software Corporation, Rep. MIL-HDBK-217 J.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lavanya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, A., Jegatheesan, R. & Vijayakumar, K. Design of Novel Dual Input DC–DC Converter for Energy Harvesting System in IoT Sensor Nodes. Wireless Pers Commun 117, 2793–2808 (2021). https://doi.org/10.1007/s11277-020-07048-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07048-0

Keywords