Skip to main content

Advertisement

Log in

Energy Harvesting for Cooperative Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we analyze the performance of cooperative cognitive radio networks where the secondary nodes harvest energy from radio frequency signals. Our analysis takes into interference aspect: the secondary source and relays transmit only when they generate low interference to primary receiver (\(P_R\)). Besides, we analyze the signal to interference plus noise ratio at secondary relays and destination taking into consideration primary interference. To reach higher data rates, harvesting duration is optimized in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhan, J., Liu, Y., Tang, X., & Chen, Q. (2018). Relaying protocols for buffer-aided energy harvesting wireless cooperative networks. IET Networks, 7(3), 109–118.

    Article  Google Scholar 

  2. Xiuping, W., Feng, Y., & Tian, Z. (2018). The DF–AF selection relay transmission based on energy harvesting. In 2018 10th International conference on measuring technology and mechatronics automation (ICMTMA) (pp. 174–177).

  3. Nguyen, H. T., Nguyen, S. Q., & Hwang, W.-J. (2018). Outage probability of energy harvesting relay systems under unreliable backhaul connections. In 2018 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 19–23).

  4. Qiu, C., Hu, Y., & Chen, Y. (2018). Lyapunov optimized cooperative communications with stochastic energy harvesting relay. IEEE Internet of Things Journal, 5(2), 1323–1333.

    Article  Google Scholar 

  5. Sui, D., Hu, F., Zhou, W., Shao, M., & Chen, M. (2018). Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal, 5(2), 1100–1107.

    Article  Google Scholar 

  6. Le, D. T., Hoang, T. M., Tan, N. T., & Choi, S.-G. (2018). Analysis of partial relay selection in NOMA systems with RF energy harvesting. In 2018 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 13–18).

  7. Le, Q. N., Bao, V. N. Q., & An, B. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.

    Article  Google Scholar 

  8. Gong, J., Chen, X., & Xia, M. (2018). Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Transactions on Wireless Communications, 17(5), 3046–3058.

    Article  Google Scholar 

  9. Tang, H., Xie, X., & Chen, J. (2018). X-duplex relay with self-interference signal energy harvesting and its hybrid mode selection method. In 2018 27th Wireless and optical communication conference (WOCC) (pp. 1–6).

  10. Chiu, H.-C., & Huang, W.-J. (2018) Precoding design in two-way cooperative system with energy harvesting relay. In 2018 27th Wireless and optical communication conference (WOCC) (pp. 1–5).

  11. Gurjar, D. S., Singh, U., & Upadhyay, P. K. (2018). Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In 2018 IEEE Wireless communications and networking conference (WCNC) (pp. 1–6).

  12. Singh, K., Ku, M.-L., Lin, J.-C., & Ratnarajah, T. (2018). Toward optimal power control and transfer for energy harvesting amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 17, 4971–4986.

    Article  Google Scholar 

  13. Wu, Y., Qian, L. P., Huang, L., & Shen, X. (2018). Optimal relay selection and power control for energy-harvesting wireless relay networks. IEEE Transactions on Green Communications and Networking, 2(2), 471–481.

    Article  Google Scholar 

  14. Fan, R., Atapattu, S., Chen, W., Zhang, Y., & Evans, J. (2018). Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access, 6, 24582–24595.

    Article  Google Scholar 

  15. Huang, Y., Wang, J., Zhang, P., & Wu, Q. (2018). Performance analysis of energy harvesting multi-antenna relay networks with different antenna selection schemes. IEEE Access, 6, 5654–5665.

    Article  Google Scholar 

  16. Babaei, M., Aygölü, Ü., & Basar, E. (2018). BER Analysis of dual-hop relaying with energy harvesting in Nakagami-m fading channel. IEEE Transactions on Wireless Communications, 17, 1. (Early Access).

    Article  Google Scholar 

  17. Kalluri, T., Peer, M., Bohara, V. A., da Costa, D. B., & Dias, U. S. (2018). Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Communications, 12(7), 838–847.

    Article  Google Scholar 

  18. Xie, D., Lai, X., Lei, X., & Fan, L. (2018). Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access, 6, 5596–5606.

    Article  Google Scholar 

  19. Yan, Z., Chen, S., Zhang, X., & Liu, H.-L. (2018). Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet of Things Journal, 5, 1. (Early Access).

    Article  Google Scholar 

  20. Van Nhan, V., Nguyen, T. G., So-In, C., Baig, Z. A., & Sanguanpong, S. (2018). Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy. IEEE Access, 6, 23406–23419.

    Article  Google Scholar 

  21. Behdad, Z., Mahdavi, M., & Razmi, N. (2018). A new relay policy in RF energy harvesting for IoT networks—A cooperative network approach. IEEE Internet of Things Journal, 5, 1. (Early Access).

    Article  Google Scholar 

  22. Yao, R., Lu, Y., Tsiftsis, T. A., Qi, N., Mekkawy, T., & Xu, F. (2018). Secrecy rate-optimum energy splitting for an untrusted and energy harvesting relay network. IEEE Access, 6, 19238–19246.

    Article  Google Scholar 

  23. Yin, C., Nguyen, H. T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., & Duong, T. Q. (2018). Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access, 6, 12074–12084.

    Article  Google Scholar 

  24. Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M.-S. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1, 192–203. (Early Access).

    Article  Google Scholar 

  25. Rubio, J., Pascual-Iserte, A., & Payaro, M. (2013). Energy-efficient resource allocation techniques for battery management with energy harvesting nodes: A practical approach. In European wireless 2013; 19th European wireless conference.

  26. Takamiya, M. (2015). Energy efficient design and energy harvesting for energy autonomous systems. In VLSI Design, automation and test (VLSI-DAT).

  27. John, S. (2015). Performance measure and energy Harvesting in cognitive and non-cognitive radio networks. In 2015 International conference on innovations in information, embedded and communication systems (ICIIECS).

  28. Zhang, S., Zhao, H., Hafid, A. S., & Wang, S. (2016). Joint optimization of energy harvesting and spectrum sensing for energy harvesting cognitive radio. In 2016 IEEE 84th Vehicular technology conference (VTC-Fall).

  29. Han, G., Zhang, J.-K., & Mu, X. (2016). Joint optimization of energy harvesting and detection threshold for energy harvesting cognitive radio networks. IEEE Access, 4, 7212–7222.

    Article  Google Scholar 

  30. Hasna, M. O., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52(1), 130–135.

    Article  Google Scholar 

  31. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Let \(X_{1}\) and \(X_{2}\) be exponential r.v. The CDF of \(X=X_{1}X_{2}\) is given by

$$\begin{aligned} P_{X}(x)=P(X_{1}X_{2}\le x)=\int _{0}^{+\infty }P\left( X_{1}\le \frac{x}{y} \right) \sigma _{2}e^{-\sigma _{2}y}dy. \end{aligned}$$
(51)

We deduce

$$\begin{aligned} P_{X}(x)&= \int _{0}^{+\infty }\left[ 1-e^{-\sigma _{1}\frac{x}{y}}\right] \sigma _{2}e^{-\sigma _{2}y}dy \nonumber \\&= 1-\int _{0}^{+\infty }e^{-\sigma _{1}\frac{x}{y}}\sigma _{2}e^{-\sigma _{2}y}dy \end{aligned}$$
(52)

We have

$$\begin{aligned} \int _{0}^{+\infty }e^{-\frac{c}{y}}e^{-\frac{y}{d}}dy=2\sqrt{\frac{c}{d}} K_{1}\left( 2\sqrt{\frac{c}{d}}\right) . \end{aligned}$$
(53)

We use (52) and (53) with \(c=\sigma _{1}x\) and \(d=\frac{1}{ \sigma _{2}}\), we obtain

$$\begin{aligned} P_{X}(x)=1-2\sqrt{\sigma _{1}\sigma _{2}x}K_{1}\left( 2\sqrt{\sigma _{1}\sigma _{2}x}\right) . \end{aligned}$$
(54)

We deduce the PDF

$$\begin{aligned} p_{X}(x)=-\frac{\sqrt{\sigma _{1}\sigma _{2}}}{\sqrt{x}}K_{1}\left( 2\sqrt{ \sigma _{1}\sigma _{2}x}\right) -2\sqrt{\sigma _{1}\sigma _{2}x}K_{1}^{{\prime }}\left( 2\sqrt{\sigma _{1}\sigma _{2}x}\right) \frac{\sqrt{\sigma _{1}\sigma _{2}}}{ \sqrt{x}}. \end{aligned}$$
(55)

Using

$$\begin{aligned} K_{1}^{^{\prime }}(z)=-K_{0}(z)-\frac{K_{1}(z)}{z}, \end{aligned}$$
(56)

we obtain

$$\begin{aligned} p_{X}(x)=2\sigma _{1}\sigma _{2}K_{0}\left( 2\sqrt{\sigma _{1}\sigma _{2}x}\right) . \end{aligned}$$
(57)

Appendix 2

$$\begin{aligned} P\left( \Gamma _{SR_{k}}\le x\right) =P\left( \frac{eX_{4}X_{5}}{f+X_{3}}\le x\right) =P\left( X_{4}X_{5}\le x\frac{X_{6}}{e}\right) , \end{aligned}$$
(58)

where

$$\begin{aligned} X_{6}=f+X_{3}. \end{aligned}$$
(59)

Since \(X_{3}\) is exponential r.v., the PDF of \(X_{6}\) is given by as

$$\begin{aligned} f_{X_{6}}(u)=\alpha _{3}e^{-\alpha _{3}(u-f)},u\ge f \end{aligned}$$
(60)

Therefore, we have

$$\begin{aligned} P\left( \Gamma _{SR_{k}}\le x\right) =\int _{f}^{+\infty }P\left( X_{4}X_{5}\le x\frac{y}{ e}\right) f_{X_{6}}(y)dy, \end{aligned}$$
(61)

Using the results of “Appendix 1”, we have

$$\begin{aligned} P\left( \Gamma _{SR_{k}} \le x\right)&= \int _{f}^{+\infty }\left[ 1-2\sqrt{\alpha _{4}\alpha _{5}x\frac{y}{e}}K_{1}\left( 2\sqrt{\alpha _{4}\alpha _{5}x\frac{y }{e}}\right) \right] \alpha _{3}e^{-\alpha _{3}(y-f)}dy, \nonumber \\&= 1-\alpha _{3}e^{\alpha _{3}f}2\sqrt{\alpha _{4}\alpha _{5}\frac{x}{e}} \int _{f}^{+\infty }\sqrt{y}K_{1}\left( 2\mu \sqrt{y}\right) e^{-\alpha _{3}y}dy \nonumber \\&= 1-\alpha _{3}e^{\alpha _{3}f}2\sqrt{\alpha _{4}\alpha _{5}\frac{x}{e}} \int _{0}^{+\infty }\sqrt{y}K_{1}\left( 2\mu \sqrt{y}\right) e^{-\alpha _{3}y}dy \nonumber \\&+\alpha _{3}e^{\alpha _{3}f}2\sqrt{\alpha _{4}\alpha _{5}\frac{x}{e}} \int _{0}^{f}\sqrt{y}K_{1}\left( 2\mu \sqrt{y}\right) e^{-\alpha _{3}y}dy \end{aligned}$$
(62)

where

$$\begin{aligned} \mu =\sqrt{\frac{\alpha _{4}\alpha _{5}x}{e}} \end{aligned}$$

We have

$$\begin{aligned} \int _{0}^{+\infty }\sqrt{y}K_{1}\left( 2\mu \sqrt{y}\right) e^{-\alpha _{3}y}dy=\frac{e^{ \frac{\mu ^{2}}{2\alpha _{3}}}}{2\mu \alpha _{3}}W_{-1,0.5}\left( \frac{\mu ^{2}}{ \alpha _{3}}\right) , \end{aligned}$$
(63)

where \(W_{\mu ,\nu }(x)\) is the Whittaker function.

The CDF of \(\Gamma _{SR_{k}}\) is given by

$$\begin{aligned} F_{\Gamma _{SR_{k}}}(x)&= 1-\alpha _{3}e^{\alpha _{3}f}2\sqrt{ \alpha _{4}\alpha _{5}\frac{x}{e}}\frac{e^{\frac{\mu ^{2}}{2\alpha _{3}}}}{ 2\mu \alpha _{3}}W_{-1,0.5}\left( \frac{\mu ^{2}}{\alpha _{3}}\right) \nonumber \\&+\alpha _{3}e^{\alpha _{3}f}2\sqrt{\alpha _{4}\alpha _{5}\frac{x}{e}} \int _{0}^{f}\sqrt{y}K_{1}\left( 2\mu \sqrt{y}\right) e^{-\alpha _{3}y}dy. \end{aligned}$$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halima, N.B., Boujemâa, H. Energy Harvesting for Cooperative Cognitive Radio Networks. Wireless Pers Commun 112, 523–540 (2020). https://doi.org/10.1007/s11277-020-07058-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07058-y

Keywords

Navigation