Skip to main content

Advertisement

Log in

FreeBW-RPL: A New RPL Protocol Objective Function for Internet of Multimedia Things

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Most of the current research has been restricted to scalar sensor data based IoT applications. However, today’s research and development activities rely on multimedia-based services and applications while this kind of applications has several requirements in terms of storage, bandwidth, latency, etc. Furthermore, protocols dedicated to IoT applications have proved their weakness in multimedia environments. Hence, a new paradigm called internet of multimedia things (IoMT) has been proposed to fulfill the requirements of multimedia applications. In this paradigm different multimedia things can interact and cooperate with each other over the Internet. Moreover, IETF ROLL working group standardized an IPv6 routing protocol for low-power and lossy networks (RPL for LLNs) for resource constrained devices. In this paper, we propose an enhanced version of RPL for IoMT called free bandwidth (FreeBW)-RPL in which the sensed data is essentially provided by multimedia devices. FreeBW-RPL protocol proposes a new objective function called FreeBW that takes the FreeBW calculation in the network layer. We set the QoS routing challenge as the amount of the bandwidth while selecting the routing path in order to measure the maximum FreeBW so as to deliver better performance of the multimedia applications. Simulations have been conducted over COOJA simulator. The obtained results proved that our proposal outperforms the basic ones in terms of end-to-end delay, throughput, packet delivery ratio and energy consumption and provides better performance than other protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tan, L., & Wang, N. (2010). Future internet: The internet of things. In: 2010 3rd international conference on advanced computer theory and engineering (ICACTE) (Vol. 5, pp. 376–380). https://doi.org/10.1109/ICACTE.2010.5579543.

  2. Ma, H.-D. (2011). Internet of things: Objectives and scientific challenges. Journal of Computer Science and Technology, 26(6), 919–924. https://doi.org/10.1007/s11390-011-1189-5.

    Article  Google Scholar 

  3. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  Google Scholar 

  4. Aggarwal, C. C., Ashish, N., & Sheth, A. (2013). The internet of things: A survey from the data-centric perspective (pp. 383–428). Boston: Springer. https://doi.org/10.1007/978-1-4614-6309-2_12.

    Book  Google Scholar 

  5. Floris, A., & Atzori, L. (2015). Quality of experience in the multimedia internet of things: Definition and practical use-cases. In: IEEE international conference on communication workshop (ICCW), 2015 (pp. 1747–1752). https://doi.org/10.1109/ICCW.2015.7247433.

  6. Alvi, S. A., Afzal, B., Shah, G. A., Atzori, L., & Mahmood, W. (2015). Internet of multimedia things: Vision and challenges. Ad Hoc Networks, 33, 87–111. https://doi.org/10.1016/j.adhoc.2015.04.006.

    Article  Google Scholar 

  7. Wang, Q., Zhao, Y., Wang, W., Minoli, D., Sohraby, K., Zhu, H., et al. (2017). Multimedia iot systems and applications. Global Internet of Things Summit (GIoTS), 2017, 1–6. https://doi.org/10.1109/GIOTS.2017.8016221.

    Article  Google Scholar 

  8. Winter, T., Thubert, P., Clausen, T., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., & Vasseurr, J. (2012). RPL: IPv6 routing protocol for low power and Lossy networks. Technical report, RFC 6550, IETF ROLL WG.

  9. Kharrufa, H., Al-Kashoash, H. A., & Kemp, A. H. (2019). RPL-based routing protocols in IoT applications: A review. IEEE Sensors Journal, 19(15), 5952–5967.

    Article  Google Scholar 

  10. Wang, J., Liu, Z., Shen, Y., Chen, H., Zheng, L., Qiu, H., et al. (2016). A distributed algorithm for inter-layer network coding-based multimedia multicast in internet of things. Computers & Electrical Engineering, 52, 125–137. https://doi.org/10.1016/j.compeleceng.2015.11.026.

    Article  Google Scholar 

  11. Said, O., Albagory, Y., Nofal, M., & Raddady, F. A. (2017). IoT-RTP and IoT-RTCP: Adaptive protocols for multimedia transmission over internet of things environments. IEEE Access, 5, 16757–16773. https://doi.org/10.1109/ACCESS.2017.2726902.

    Article  Google Scholar 

  12. Huang, X., Xie, K., Leng, S., Yuan, T., & Ma, M. (2018). Improving quality of experience in multimedia internet of things leveraging machine learning on big data. Future Generation Computer Systems, 86, 1413–1423. https://doi.org/10.1016/j.future.2018.02.046.

    Article  Google Scholar 

  13. Elshafeey, A., Elkader, N. S., & Zorkany, M. (2017). Compressed sensing video streaming for internet of multimedia things. International Journal of Cyber-Security and Digital Forensics, 6(1), 44–53.

    Article  Google Scholar 

  14. Zhao, P., Yang, X, Yu, W., Dong, C., Yang, S., & Bhattarai, S. (2014). Toward efficient estimation of available bandwidth for IEEE 802.11-based wireless networks. Journal of Network and Computer Applications, 40, 116–125. https://doi.org/10.1016/j.jnca.2013.08.005.

    Article  Google Scholar 

  15. Chaudhari, S. S., & Biradar, R. C. (2015). Survey of bandwidth estimation techniques in communication networks. Wireless Personal Communications, 83(2), 1425–1476. https://doi.org/10.1007/s11277-015-2459-2.

    Article  Google Scholar 

  16. Kim, H.-S., Ko, J., Culler, D. E., & Paek, J. (2017). Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): A survey. IEEE Communications Surveys & Tutorials, 19(4), 2502–2525.

    Article  Google Scholar 

  17. Zikria, Y. B., Afzal, M. K., Ishmanov, F., Kim, S. W., & Yu, H. (2018). A survey on routing protocols supported by the Contiki Internet of things operating system. Future Generation Computer Systems, 82, 200–219.

    Article  Google Scholar 

  18. Ghaleb, B., Al-Dubai, A. Y., Ekonomou, E., Alsarhan, A., Nasser, Y., Mackenzie, L. M., et al. (2018). A survey of limitations and enhancements of the IPv6 routing protocol for low-power and lossy networks: A focus on core operations. IEEE Communications Surveys & Tutorials, 21(2), 1607–1635.

    Article  Google Scholar 

  19. Lamaazi, H., & Benamar, N. (2020). A comprehensive survey on enhancements and limitations of the RPL protocol: A focus on the objective function. Ad Hoc Networks, 96, 102001.

    Article  Google Scholar 

  20. Sobral, J. V., Rodrigues, J. J., Rabêlo, R. A., Al-Muhtadi, J., & Korotaev, V. (2019). Routing protocols for low power and lossy networks in internet of things applications. Sensors, 19(9), 2144.

    Article  Google Scholar 

  21. Nassar, J., Berthomé, M., Dubrulle, J., Gouvy, N., Mitton, N., & Quoitin, B. (2018). Multiple instances QoS routing in RPL: Application to smart grids. Sensors, 18(8), 2472.

    Article  Google Scholar 

  22. Charles, A. S.  J., & Kalavathi, P. (2018). QoS measurement of RPL using Cooja simulator and Wireshark network analyser. International Journal of Computer Sciences and Engineering, 6(4), 283–291.

    Google Scholar 

  23. Zier, A., Abouaissa, A., & Lorenz, P. (2018). E-RPL: A routing protocol for IoT networks. In IEEE global communications conference (GLOBECOM). IEEE, pp 1–6.

  24. Mishra, S. N., & Chinara, S. (2019). CA-RPL: A clustered additive approach in RPL for IoT based scalable networks. In International conference on ubiquitous communications and network computing (pp. 103–114). Springer.

  25. Kharrufa, H., Al-Kashoash, H., & Kemp, A. H. (2018). A game theoretic optimization of RPL for mobile internet of things applications. IEEE Sensors Journal, 18(6), 2520–2530.

    Article  Google Scholar 

  26. Gaddour, O., Koubâa, A., & Abid, M. (2015). Quality-of-service aware routing for static and mobile IPv6-based low-power and lossy sensor networks using RPL. Ad Hoc Networks, 33, 233–256. https://doi.org/10.1016/j.adhoc.2015.05.009.

    Article  Google Scholar 

  27. Alvi, S. A., Shah, G. A., & Mahmood, W. (2015). Energy efficient green routing protocol for internet of multimedia things. In 2015 IEEE tenth international conference on intelligent sensors, sensor networks and information processing (ISSNIP) (pp. 1–6). https://doi.org/10.1109/ISSNIP.2015.7106958.

  28. Mortazavi, F., & Khansari, M. (2018). An energy-aware RPL routing protocol for internet of multimedia things. In Proceedings of the international conference on smart cities and internet of things (p. 11). ACM.

  29. Rani, S., Ahmed, S. H., Talwar, R., Malhotra, J., & Song, H. (2017). IoMT: A reliable cross layer protocol for internet of multimedia things. IEEE Internet of Things Journal, 4(3), 832–839. https://doi.org/10.1109/JIOT.2017.2671460.

    Article  Google Scholar 

  30. Castellanos, W. E., Guerri, J. C., & Arce, P. (2016). A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Computer Communications, 77, 10–25.

    Article  Google Scholar 

  31. Zhou, J., Liu, L., Deng, Y., & Huang, S. (2014). A QoS routing protocol with bandwidth allocation in multichannel ad hoc networks. Wireless Personal Communications, 75(1), 273–291.

    Article  Google Scholar 

  32. Zhu, H., & Chlamtac, I. (2006). Admission control and bandwidth reservation in multi-hop ad hoc networks. Computer Networks, 50(11), 1653–1674. https://doi.org/10.1016/j.comnet.2005.06.014.

    Article  MATH  Google Scholar 

  33. Sarr, C., Chaudet, C., Chelius, G., & Lassous, I . G. (2008). Bandwidth estimation for IEEE 802.11-based ad hoc networks. IEEE Transactions on Mobile Computing, 7(10), 1228–1241. https://doi.org/10.1109/TMC.2008.41.

    Article  MATH  Google Scholar 

  34. Xu, H., Huang, L., Qiao, C., Zhang, Y., & Sun, Q. (2012). Bandwidth-power aware cooperative multipath routing for wireless multimedia sensor networks. IEEE Transactions on Wireless Communications, 11(4), 1532–1543. https://doi.org/10.1109/TWC.2012.020812.111265.

    Article  Google Scholar 

  35. Kim, H., Paek, J., Culler, D. E., & Bahk, S. (2017). Do not lose bandwidth: Adaptive transmission power and multihop topology control. In 2017 13th international conference on distributed computing in sensor systems (DCOSS) (pp. 99–108). https://doi.org/10.1109/DCOSS.2017.23.

  36. Zhu, H., & Chlamtac, I. (2005). Performance analysis for IEEE 802.11 e EDCF service differentiation. IEEE Transactions on Wireless Communications, 4(4), 1779–1788. https://doi.org/10.1109/TWC.2005.847113.

    Article  Google Scholar 

  37. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level sensor network simulation with COOJA. In Proceedings of 2006 31st IEEE conference on local computer networks (pp. 641–648). https://doi.org/10.1109/LCN.2006.322172.

  38. Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki—A lightweight and flexible operating system for tiny networked sensors. In 29th annual IEEE international conference on local computer networks (pp. 455–462). https://doi.org/10.1109/LCN.2004.38.

  39. Clark, B. N., Colbourn, C. J., & Johnson, D. S. (1990). Unit disk graphs. Discrete Mathematics, 86(1), 165–177. https://doi.org/10.1016/0012-365X(90)90358-O.

    Article  MathSciNet  MATH  Google Scholar 

  40. Mardini, W., Aljawarneh, S., Al-Abdi, A., & Taamneh, H. (2018). Performance evaluation of RPL objective functions for different sending intervals. In 6th international symposium on digital forensic and security (ISDFS) (pp. 1–6). IEEE.

  41. Farooq, M. O., & Pesch, D. (2019). Reduced overhead routing in short-range low-power and lossy wireless networks. Sensors, 19(5), 1240.

    Article  Google Scholar 

  42. Aissa, Y. B, Grichi, H., Khalgui, M., Koubâa, A., & Bachir, A. (2019). QCOF: New RPL extension for QoS and congestion-aware in low power and Lossy network. In 14th international conference on software technologies (pp. 560–569).

  43. Safaei, B., Monazzah, A. M. H., Shahroodi, T., & Ejlali, A. (2018). Objective function: A key contributor in internet of things primitive properties. In Real-time and embedded systems and technologies (RTEST) (pp. 39–46). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lehsaini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzebiba, H., Lehsaini, M. FreeBW-RPL: A New RPL Protocol Objective Function for Internet of Multimedia Things. Wireless Pers Commun 112, 1003–1023 (2020). https://doi.org/10.1007/s11277-020-07088-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07088-6

Keywords

Navigation