Skip to main content

Advertisement

Log in

An Effective Relay Node Selection Technique for Energy Efficient WSN-Assisted IoT

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The internet of things (IoT) is one of the emerging network paradigms that are reducing the distance between the physical and cyber world. In wireless sensor Network (WSN)-assisted IoT, hundreds to thousands of sensor nodes are deployed at a large scale, which in turn increases the complexity. Therefore, the issues and challenges of such network differ from WSN. The sensor nodes are an important component of WSN-Assisted IoT network running on limited and non-rechargeable energy resource. So, developing robust and energy-efficient routing protocol is a challenging task to prolong the network lifetime. In contrast to the state-of-the-art techniques this paper introduces: (1) a hierarchical cluster framework for network deployment; (2) an effective Relay Node (RN) selection scheme by considering the following parameters: node density in the cluster, shortest distance node selection as a RN, RN communication range as threshold distance for next RN selection; (3) an efficient routing algorithm to meet the requirement of proposed model. The proposed protocol has been compared with standard WSN routing protocols, viz., LEACH, MOD-LEACH, ME-CBCCP, EESAA, TDEEC, DEEC, and SEP. By extensive simulation for various network parameters, the proposed effective relay node selection for energy efficient consumption protocol found to be more effective in terms of network lifetime, energy consumption and supports scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: a contemporary survey. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06407-w.

    Article  Google Scholar 

  2. Jelicic, V., Magno, M., Brunelli, D., Paci, G., & Benini, L. (2013). Context-adaptive multimodal wireless sensor network for energy-efficient gas monitoring. IEEE Sensors Journal,13(1), 328–338.

    Article  Google Scholar 

  3. Dener, M. (2018). A new energy efficient hierarchical routing protocol for wireless sensor networks. Wireless Personal Communications,101(1), 269–286.

    Article  Google Scholar 

  4. Huang, J., Meng, Y., Gong, X., Liu, Y., & Duan, Q. (2014). A novel deployment scheme for green internet of things. IEEE Internet of Things Journal,1(2), 196–205.

    Article  Google Scholar 

  5. Shen, W., & Wu, Q. (2011). Exploring redundancy in sensor deployment to maximize network lifetime and coverage. In Sensor, Mesh and Ad Hoc communications and networks (SECON), 2011 8th annual IEEE communications society conference on (pp. 557–565). IEEE.

  6. Li, F., Luo, J., Wang, W., & He, Y. (2015). Autonomous deployment for load balancing k-surface coverage in sensor networks. IEEE Transactions on Wireless Communications,14(1), 279–293.

    Article  Google Scholar 

  7. Li, F., Luo, J., Xin, S. Q., Wang, W. P., & He, Y. (2012). LAACAD: Load balancing k-area coverage through autonomous deployment in wireless sensor networks. In Distributed computing systems (ICDCS), 2012 IEEE 32nd international conference on (pp. 566–575). IEEE.

  8. Rani, S., Malhotra, J., & Talwar, R. (2013). EEICCP—energy efficient protocol for wireless sensor networks. Wireless sensor network,5(07), 127.

    Article  Google Scholar 

  9. Rani, S., Malhotra, J., & Talwar, R. (2014). Energy efficient protocol for densely deployed homogeneous network. In Issues and challenges in intelligent computing techniques (ICICT), 2014 international conference on (pp. 292–298). IEEE.

  10. Xu, M., & Leung, H. (2011). A joint fusion, power allocation and delay optimization approach for wireless sensor networks. IEEE Sensors Journal,11(3), 737–744.

    Article  Google Scholar 

  11. Lee, J. S., & Cheng, W. L. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal,12(9), 2891–2897.

    Article  Google Scholar 

  12. Majumder, R., Bag, G., & Kim, K. H. (2012). Power sharing and control in distributed generation with wireless sensor networks. IEEE Transactions on Smart Grid,3(2), 618–634.

    Article  Google Scholar 

  13. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002, Twenty-First annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE (Vol. 3, pp. 1567–1576). IEEE.

  14. Cardei, M., Thai, M. T., Li, Y., & Wu, W. (2005). Energy-efficient target coverage in wireless sensor networks. In INFOCOM 2005, 24th annual joint conference of the IEEE computer and communications societies. Proceedings IEEE (Vol. 3, pp. 1976–1984). IEEE.

  15. Liu, C., & Cao, G. (2012). Distributed critical location coverage in wireless sensor networks with lifetime constraint. In INFOCOM, 2012 proceedings IEEE (pp. 1314–1322). IEEE.

  16. Rani, S., Talwar, R., Malhotra, J., Ahmed, S. H., Sarkar, M., & Song, H. (2015). A novel scheme for an energy efficient internet of things based on wireless sensor networks. Sensors,15(11), 28603–28626.

    Article  Google Scholar 

  17. Mohamed, R. E., Saleh, A. I., Abdelrazzak, M., & Samra, A. S. (2018). Survey on wireless sensor network applications and energy efficient routing protocols. Wireless Personal Communications,101(2), 1019–1055.

    Article  Google Scholar 

  18. Kapnadak, V., & Coyle, E. J. (2011). Optimal non-uniform deployment of sensors for detection in single-hop wireless sensor networks. In Sensor, Mesh and Ad Hoc communications and networks (SECON), 2011 8th annual IEEE communications society conference on (pp. 89–97). IEEE.

  19. Xu, X., Ansari, R., & Khokhar, A. (2013). Power-efficient hierarchical data aggregation using compressive sensing in WSNs. In 2013 IEEE international conference on communications (ICC) (pp. 1769–1773). IEEE.

  20. Yang, D., Misra, S., Fang, X., Xue, G., & Zhang, J. (2012). Two-tiered constrained relay node placement in wireless sensor networks: computational complexity and efficient approximations. IEEE Transactions on Mobile Computing,11(8), 1399–1411.

    Article  Google Scholar 

  21. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on (p. 10). IEEE.

  22. Manap, Z., Ali, B. M., Ng, C. K., Noordin, N. K., & Sali, A. (2013). A review on hierarchical routing protocols for wireless sensor networks. Wireless Personal Communications,72(2), 1077–1104.

    Article  Google Scholar 

  23. Aslam, M., Javaid, N., Rahim, A., Nazir, U., Bibi, A., & Khan, Z. A. (2012). Survey of extended LEACH-based clustering routing protocols for wireless sensor networks. In High performance computing and communication and 2012 IEEE 9th international conference on embedded software and systems (HPCC-ICESS), 2012 IEEE 14th international conference on (pp. 1232–1238). IEEE.

  24. Buttyán, L., & Schaffer, P. (2010). Position-based aggregator node election in wireless sensor networks. International Journal of Distributed Sensor Networks,6(1), 679205.

    Article  Google Scholar 

  25. Jung, S. M., Han, Y. J., & Chung, T. M. (2007). The concentric clustering scheme for efficient energy consumption in the PEGASIS. In Advanced communication technology, The 9th international conference on (Vol. 1, pp. 260–265). IEEE.

  26. Saini, P., & Sharma, A. K. (2010). Energy efficient scheme for clustering protocol prolonging the lifetime of heterogeneous wireless sensor networks. International Journal of Computer Applications,6(2), 30–36.

    Article  Google Scholar 

  27. Shah, T., Javaid, N., & Qureshi, T. N. (2012). Energy efficient sleep awake aware (EESAA) intelligent sensor network routing protocol. In Multitopic conference (INMIC), 2012 15th international (pp. 317–322). IEEE.

  28. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. Boston University Computer Science Department.

  29. Loscri, V., Morabito, G., & Marano, S. (2005). A two-levels hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH). In Vehicular technology conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd (Vol. 3, pp. 1809–1813). IEEE.

  30. Kumar, D., & Patel, R. B. (2011). Multi-hop data communication algorithm for clustered wireless sensor networks. International Journal of Distributed Sensor Networks,7(1), 984795.

    Article  Google Scholar 

  31. Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing,3(4), 366–379.

    Article  Google Scholar 

  32. Yueyang, L., Hong, J., & Guangxin, Y. (2006). An energy-efficient PEGASIS-based enhanced algorithm in wireless sensor networks. China Communications, 91–97.

  33. Lee, S., Yoo, J., & Chung, T. (2004). Distance-based energy efficient clustering for wireless sensor networks. In Local computer networks, 2004. 29th annual IEEE international conference on (pp. 567–568). IEEE.

  34. Dehghani, S., Barekatain, B., & Pourzaferani, M. (2018). An enhanced energy-aware cluster-based routing algorithm in wireless sensor networks. Wireless Personal Communications,98(1), 1605–1635.

    Article  Google Scholar 

  35. Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). MODLEACH: a variant of LEACH for WSNs. In Broadband and wireless computing, communication and applications (BWCCA), 2013 Eighth international conference on (pp. 158–163). IEEE.

  36. Muruganathan, S. D., Ma, D. C., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Communications Magazine,43(3), S8–13.

    Article  Google Scholar 

  37. Ye, M., Li, C., Chen, G., & Wu, J. (2005). EECS: an energy efficient clustering scheme in wireless sensor networks. In Performance, computing, and communications conference, 2005. IPCCC 2005. 24th IEEE international (pp. 535–540). IEEE.

  38. Dehni, L., Krief, F., & Bennani, Y. (2006). Power control and clustering in wireless sensor networks. In Challenges in Ad Hoc networking (pp. 31–40). Springer, Boston, MA.

  39. Rani, S., Malhotra, J., & Talwar, R. (2014). On the development of realistic cross layer communication protocol for wireless sensor networks. Wireless Sensor Network,6(05), 57.

    Article  Google Scholar 

  40. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670.

    Article  Google Scholar 

  41. Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for hierarchical wireless sensor networks. JNW,2(5), 87–97.

    Article  Google Scholar 

  42. Bara’a, A. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing,12(7), 1950–1957.

    Article  Google Scholar 

  43. Mittal, V., Gupta, S., & Choudhury, T. (2018). Comparative analysis of authentication and access control protocols against malicious attacks in wireless sensor networks. In Smart computing and informatics (pp. 255–262). Springer, Singapore.

  44. Han, Z., Wu, J., Zhang, J., Liu, L., & Tian, K. (2014). A general self-organized tree-based energy-balance routing protocol for wireless sensor network. IEEE Transactions on Nuclear Science,61(2), 732–740.

    Article  Google Scholar 

  45. Chang, J. H., & Tassiulas, L. (2000). Energy conserving routing in wireless ad-hoc networks. In INFOCOM 2000, Nineteenth annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE (Vol. 1, pp. 22–31). IEEE.

  46. Solaiman, B. (2016). Energy optimization in wireless sensor networks using a hybrid k-means pso clustering algorithm. Turkish Journal of Electrical Engineering and Computer Sciences,24(4), 2679–2695.

    Article  Google Scholar 

  47. Deniz, F., Bagci, H., & Korpeoglu, I. (2016). An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks. Ad Hoc Networks,44, 104–117.

    Article  Google Scholar 

  48. Islam, K., Shen, W., & Wang, X. (2012). Wireless sensor network reliability and security in factory automation: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),42(6), 1243–1256.

    Article  Google Scholar 

  49. Yildiz, H. U., Temiz, M., & Tavli, B. (2015). Impact of limiting hop count on the lifetime of wireless sensor networks. IEEE Communications Letters,19(4), 569–572.

    Article  Google Scholar 

  50. Amjad, M., Afzal, M. K., Umer, T., & Kim, B. S. (2017). QoS-aware and heterogeneously clustered routing protocol for wireless sensor networks. IEEE Access,5, 10250–10262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Tripathi, S. An Effective Relay Node Selection Technique for Energy Efficient WSN-Assisted IoT. Wireless Pers Commun 112, 2611–2641 (2020). https://doi.org/10.1007/s11277-020-07167-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07167-8

Keywords

Navigation