Skip to main content
Log in

Cybersecurity Issues in Wireless Sensor Networks: Current Challenges and Solutions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks are deployed without predefined infrastructure and are generally left unattended. Indeed, the vulnerability of the wireless sensor networks to attacks comes principally from their inherent characteristics. As the data are transmitted over the air, it is very easy for an adversary to spy on traffic. Also, to meet the strict budgetary requirements, the sensor nodes tend to not be tamperproof and thus offer no protection against security attacks. Alongside with these vulnerabilities, the human intervention is always not allowed to deal with adversaries who attempt to compromise the network. Therefore, security systems are mainly needed to secure the network and ensure the protection against security threats. Indeed, cryptographic based systems are generally used to ensure security. However, due to the lack of memory and power (low computing, limited energy reserves) of the sensor nodes, most of these approaches are not suitable. Therefore, providing security while respecting the specific constraints of the sensors, represents one of the most important research issue in wireless sensor networks. Indeed, several studies have been conducted these last decades to propose lightweight and efficient security protocols for wireless sensor networks. In this paper, we review the most leading protocols and classify them based the addressed security issue. Also, we outline the main security constraints and challenges and present the future research directions based on the emerged application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akyildiz, F., Sankarasubramaniam, W. S., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Google Scholar 

  2. Bala, S., Sharma, G., & A. K. Verma (2012). A survey and taxonomy of symmetric key management schemes for wireless sensor networks. In CUBE ‘12 proceedings of the CUBE international information (pp. 585–592).

  3. Dimitriou, T. (2005). Efficient mechanisms for secure inter-node and aggregation processing in sensor networks. In Ad-Hoc, mobile, and wireless networks. Lecture notes in computer science (pp. 18–31). Berlin: Springer.

    Google Scholar 

  4. Soroush, H., Salajegheh, M., & Dimitriou, T. (2007). Providing transparent security services to sensor networks. In ICC (pp. 3431–3436). IEEE.

  5. Boukerche, A., Ren, Y., & Mokdad, L. (2010). Applying symmetric and asymmetric key algorithms for the security in wireless networks: proof of correctness. In Proceedings of the 6th ACM workshop on QoS and security for wireless and mobile networks, Q2SWinet ‘10 (pp. 33–40). New York, NY: ACM.

  6. Das, A. K. (2011). An improved efficient key distribution mechanism for large-scale heterogeneous mobile sensor networks. International Journal of Information Processing, 2(3), 21–32.

    Google Scholar 

  7. Stallings, W. (2003). Network security essentials (2nd ed.). London: Pearson Education.

    Google Scholar 

  8. Shirey, R. (2000). Internet security glossary (RFC 2828). Reston: The Internet Society.

    Google Scholar 

  9. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. ACM Sigplan Notices, 35(11), 93–104.

    Google Scholar 

  10. El Gamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. In Proceedings of CRYPTO 84 on advances in cryptology (pp. 10–18). New York, NY: Springer.

  11. Al-Karaki, N. J., Raza, U. M., & Ahmed, E. K. (2004). Data aggregation in wireless sensor networks-exact and approximate algorithms. In Proceedings of IEEE workshop on high performance switching and routing (HPSR) (pp. 18–21). Avril: Phoenix Arizona.

  12. Roosta, T., Pai, S., Chen, P., Sastry, S., & Wicker, S. (2007). Inherent security of routing protocols in ad-hoc and sensor networks. In Global telecommunications conference, 2007 GLOBECOM ‘07, IEEE (pp. 1273–1278).

  13. Karlof, C., & Wagner, D. (2003). Secure routing in wireless sensor networks: attacks and countermeasures. In Proceedings of the 1st IEEE international workshop on sensor network protocols and applications (pp. 113–127).

  14. Wood, A. D., & Stankovic, J. A. (2002). Denial of service in sensor networks. IEEE Computer, 35(10), 54–62.

    Google Scholar 

  15. Shi, E., & Perrig, A. (2004). Designing secure sensor networks. Wireless Communication Magazine, 11(6), 38–43.

    Google Scholar 

  16. Hartung, C., Balasalle, J., & Han, R. (2004). Node compromise in sensor networks: the need for secure systems. Technical Report CU-CS-988-04, Department of Computer Science, University of Colorado at Boulder.

  17. Stajano, & Anderson, R. (2000) The resurrecting duckling: Security issues for ad-hoc wireless networks. In ICISC. Springer.

  18. Brownfield, M., Gupta, Y., & Davis, N. (2005). Wireless sensor network denial of sleep attack. In Proceedings of the 6th annual IEEE SMC information assurance workshop (pp. 356–364).

  19. Pirretti, M., Zhu, S., Vijaykrishnan, N., Mcdaniel, P., & Kandemir, M. (2006). The sleep deprivation attack in sensor networks: Analysis and methods of defense. International Journal of Distributed Sensor Networks, 2, 267–287.

    Google Scholar 

  20. Xiaoming, L., Spear, M., Levitt, K., Matloff, N. S., & Wu, S. F. (2008). A synchronization attack and defense in energy-efficient listen-sleep slotted MAC protocols. In ECURWARE ‘08. Second international conference on emerging security information, systems and technologies (pp. 403–411).

  21. Law, Y. L. (2005). Link-layer jamming attacks on SMAC. Technical Paper, Univ. of Twente, NL.

  22. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the twenty-first annual joint conference of the IEEE computer and communications societies (pp. 1567–1576). New York: IEEE.

  23. Newsome, J., Shi, E., Song, D., & Perrig, A. (2004). The sybil attack in sensor networks: Analysis and defenses. In Proceedings of the 3rd international symposium on information processing in sensor networks (pp. 259–268). ACM Press.

  24. Parno, B., Perrig, A., & Gligor, V. (2005). Distributed detection of node replication attacks in sensor networks. In Proceedings of IEEE symposium on security and privacy.

  25. Gruteser, M., Schelle, G., Jain, A., Han, R., & Grunwald, D. (2003). Privacy-aware location sensor networks. In Proceedings of the 9th USENIX workshop on hot topics in operating systems, (HotOS IX).

  26. Chan, H., & Perrig, A. (2003). Security and privacy in sensor networks. IEEE Computer Magazine, 36(10), 103–105.

    Google Scholar 

  27. Deng, J., Han, R., & Mishra, S. (2004). Countermeasures against traffic analysis in wireless sensor networks. Technical Report CU-CS-987-04, University of Colorado at Boulder.

  28. Gaubatz, G., et al. (2004) Public key cryptography in sensor networks-revisited. In ESAS ‘04: 1st European Wksp, security in ad-hoc and sensor networks.

  29. Piotrowski, K., Langendoerfer, P., & Peter, S. (2006). How public key cryptography incense wireless sensor node lifetime. In SASN’06, Alexandria, Virginia, USA.

  30. Wander, A. S., Gura, N., Eberle, H., Gupta, V., & Shantz, S. C. (2005). Energy analysis of public-key cryptography for wireless sensor networks. In PerCom ‘05.

  31. Gura, N., Patel, A., Wander, A., Eberle, H., & Shantz, S. C. (2004). Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In Boston, Massachusetts: 6th International workshop on cryptographic hardware and embedded systems, Aout.

  32. Ian, F. B., Gadiel, S., & Nigel, P. S. (2005). Advances in elliptic curve cryptography. London Mathematical Society Lecture Note Series (No. 317), Avril.

  33. Menezes, A. J., Vanstone, S. A., & Oorschot, P. C. V. (1996). Handbook of applied cryptography. Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

  34. Rivest, R. L. (1995). The RC5 encryption algorithm. In B. Preneel (Ed.), Fast software encryption (pp. 86–96). Berlin: Springer.

    MATH  Google Scholar 

  35. Eastlake, D., III, & Jones, P. (2001). US secure hash algorithm 1(SHA1). RFC 3174 (Informational).

  36. Rivest, R. L. (1992) The MD5 message-digest algorithm. RFC 1321, Avril.

  37. Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9thACM Conference on Computer and Communicztions Security (pp. 41–47).

  38. Du, W., Deng, J., Han, Y. S., & Varshney, P. K. (2003). A pair-wisekey pre-distribution scheme for wireless sensor networks. In Proceedings of the 10th ACM conference on computer and communications security (pp. 42–51). New York, NY: ACM Press.

  39. Blom, R. (1985). An optimal class of symmetric key generation systems. In Proceedings of the EUROCRYPT’84 Workshop on the advances in cryptology: Theory and Application of cryptographic techniques (pp. 335–38).

  40. Zhu, S., Setia, S., & Jajodia, S. (2003). LEAP: Efficient security mechanisms for large-scale distributed sensor networks. In Proceedings of the 10th ACM conference on computer and communication security (pp. 62–72).

  41. Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V., & Culler, D. E. (2002). SPINS: Security protocols for sensor networks. Wireless Network, 8, 521–534.

    MATH  Google Scholar 

  42. Younis, M. F., Ghumman, K., & Eltoweissy, M. (2006). Location-aware combinatorial key management scheme for clustered sensor networks. IEEE Transactions on Parallel and Distributed Systems, 17, 865–882.

    Google Scholar 

  43. Panja, B., Madria, S. K., & Bhargava, B. (2006). Energy and communication efficient group key management protocol for hierarchical sensor networks. In SUTC’06:Proc. IEEE Int’l. conference on sensor networks, ubiquitous, and trustworthy comp (pp. 384–93).

  44. Zhang, X., & Wang, J. (2015). An efficient key management scheme in hierarchical wireless sensor networks. In Computing, communication and security (ICCCS), 2015 international conference on (pp. 1–7). IEEE.

  45. Yuan, Q., Ma, C., Zhong, X., et al. (2016). Optimization of key predistribution protocol based on supernetworks theory in heterogeneous WSN. Tsinghua Science and Technology, 21(3), 333–343.

    MATH  Google Scholar 

  46. Gandino, F., Ferrero, R., & Rebaudengo, M. (2017). A key distribution scheme for mobile wireless sensor networks: q–s –Composite. IEEE Transactions on Information Forensics and Security, 12(1), 34–47.

    Google Scholar 

  47. Athmani, S., Bilami, A., & Boubiche, D. E. (2019). EDAK: An efficient dynamic authentication and key management mechanism for heterogeneous WSNs. Future Generation Computer Systems, 92, 789–799.

    Google Scholar 

  48. Fakhrey, H., Johnston, M., Angelini, F., & Tiwari, R. (2018). The optimum design of location-dependent key management protocol for a multiple sink WSN using a random selected cell reporter. IEEE Sensors Journal, 18(24), 10163–10173.

    Google Scholar 

  49. Sun, B., Li, Q., & Tian, B. (2018). Local dynamic key management scheme based on layer-cluster topology in WSN. Wireless Personal Communications, 103(1), 699–714.

    Google Scholar 

  50. Mawloud, O., Imene, B., Samia, A., & Bournane, A. (2018). Efficient and energy-aware key management framework for dynamic sensor networks. Computers & Electrical Engineering, 72, 990–1005.

    Google Scholar 

  51. Liu, Y., & Wu, Y. (2019). A key pre-distribution scheme based on sub-regions for multi-hop wireless sensor networks. Wireless Personal Communications, 109, 1161–1180.

    Google Scholar 

  52. Luk, M., Perrig, A., & Whillock, B. (2006). Seven cardinal properties of sensor network broadcast authentication. In Proceedings of the fourth ACM workshop on security of ad hoc and sensor networks (pp. 147–156).

  53. Karlof, C., Sastry, N., & Wagner, D. (2004). TinySec: A link layer security architecture for wireless sensor networks. In Proceedings of the 2nd international conference on embedded networked sensor systems (pp. 162–175).

  54. M. Luk, G. Mezzour, A. Perrig, et V. Gilgor, “MiniSec: a secure sensor network communication architecture,” Proceedings of the 6th international conference on Information processing in sensor networks, pp. 479-488, Avril 25 -27, 2007.

  55. Rogaway, P., Bellare, M., Black, J., & Krovetz, T. (2001). OCB: A block-cipher mode of operation for efficient authenticated encryption. In Proceedings of the 8th ACM conference on computer and communications security.

  56. Chu, S.-I., Huang, Y.-J., & Lin, W.-C. (2015). Authentication protocol design and low-cost key encryption function implementation for wireless sensor networks. IEEE Systems Journal, 11(4), 2718–2725.

    Google Scholar 

  57. Shim, K.-A. (2017). Basis: A practical multi-user broadcast authentication scheme in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 12(7), 1545–1554.

    Google Scholar 

  58. Amin, R., Islam, S. H., Biswas, G. P., & Obaidat, M. S. (2018). A robust mutual authentication protocol for WSN with multiple base-stations. Ad Hoc Networks, 75, 1–18.

    Google Scholar 

  59. Roy, P. K., Parai, K., & Hasnat, A. (2018). User authentication with session key interchange for wireless sensor network. In Methodologies and application issues of contemporary computing framework (pp. 153–165). Springer, Singapore.

  60. Riaz, R., Gillani, N. U. A., Rizvi, S., Shokat, S., & Kwon, S. J. (2019). SUBBASE: An authentication scheme for wireless sensor networks based on user biometrics. Wireless Communications and Mobile Computing, 2019, 1–11.

    Google Scholar 

  61. Wang, D., & Wang, P. (2018). Two birds with one stone: Two-factor authentication with security beyond conventional bound. IEEE Transactions on Dependable and Secure Computing, 15(4), 708–722.

    Google Scholar 

  62. Wang, D., Li, W., & Wang, P. (2018). Measuring two-factor authentication schemes for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 14(9), 4081–4092.

    Google Scholar 

  63. Li, X., Peng, J., Obaidat, M. S., Wu, F., Khan, M. K., & Chen, C. (2019). A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. IEEE Systems Journal, 14(1), 39–50.

    Google Scholar 

  64. Pirzada, A., & McDonald, C. (2004). Establishing trust in pure ad hoc networks. In Proceedings of the 27th Australian conference on computer science (pp. 47–54). Dunedin, New Zealand.

  65. Yan, Z., Zhang, P., & Virtanen, T. (2003). Trust evaluation based security solution in ad hoc networks. In Proceedings of the 7th nordic workshop on secure IT systems.

  66. Ren, K., Li, T., Wan, Z., Bao, F., Deng, R. H., & Kim, K. (2004). Highly reliable trust establishment scheme in ad hoc networks. Computer Networks: The International Journal of Computer and telecommunications Networking, 45, 687–699.

    MATH  Google Scholar 

  67. Tanachaiwiwat, S., Dave, P., Bhindwale, R., & Helmy, A. (2004). Location-centric isolation of misbehavior and trust routing in energy-constrained sensor networks. In Proceedings of IEEE international conference on performance, computing, and communications (pp. 463–469). Avril.

  68. Liang, Z., & Shi, W. (2005). PET: A personalized trust model with reputation and risk evaluation for P2P resource sharing. In Proceedings of the HICSS-38. Hilton Waikoloa Village Big Island, Hawaii, Janvier.

  69. Liang, Z., & Shi, W. (2005). Analysis of ratings on trust inference in the open environment. Technical report MIST-TR-2005-002, Department of computer Science, Wayne State University.

  70. Narayan, B. D., Vineetha, P., & Alluri, B. K. R. (2019). Enhanced trust-based cluster head selection in wireless sensor networks. In H. S. Saini, R. Sayal, A. Govardhan, & R. Buyya (Eds.), Innovations in computer science and engineering (pp. 263–275). Singapore: Springer.

    Google Scholar 

  71. Jiang, J., Han, G., Wang, F., et al. (2015). An efficient distributed trust model for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(5), 1228–1237.

    Google Scholar 

  72. Gautam, A. K., & Kumar, R. (2018). A robust trust model for wireless sensor networks. In 2018 5th IEEE Uttar Pradesh section international conference on electrical, electronics and computer engineering (UPCON) (pp. 1–5). IEEE.

  73. Mateen, A., Tanveer, J., Khan, N. A., Rehman, M., & Javaid, N. (2019). One step forward: towards a blockchain based trust model for WSNs. In International conference on P2P, parallel, grid, cloud and internet computing (pp. 57–69). Cham: Springer..

  74. Vijay Paul, S., Muzzammil, H., & Charanjeet Kour, R. (2016). Authentication of base station by HDFS using trust based model in WSN. In International conference on communication and electronics systems (ICCES) (pp. 1–5). IEEE.

  75. Liu, T., Huang, G., & Xu, Z. (2016). A user authentication protocol combined with trust model and ECC for wireless sensor networks. In 2016 IEEE 15th international conference on cognitive informatics and cognitive computing (ICCI* CC) (pp. 451–458). IEEE.

  76. Dogan, G., Avincan, K., & Brown, T. (2016). DynamicMultiProTru: An adaptive trust model for wireless sensor networks. In 2016 4th International symposium on digital forensic and security (ISDFS) (pp. 49–52). IEEE.

  77. Gaber, T., Abdelwahab, S., Elhoseny, M., & Hassanien, A. E. (2018). Trust-based secure clustering in WSN-based intelligent transportation systems. Computer Networks, 146, 151–158.

    Google Scholar 

  78. Liu, Z., Ma, Q., Liu, W., Sheng, V., Zhang, L., & Liu, G. (2018). Access control model based on time synchronization trust in wireless sensor networks. Sensors, 18(7), 2107.

    Google Scholar 

  79. Mehetre, D. C., Roslin, S. E., & Wagh, S. J. (2019). Detection and prevention of black hole and selective forwarding attack in clustered WSN with active trust. Cluster Computing, 22(1), 1313–1328.

    Google Scholar 

  80. Selvi, M., Thangaramya, K., Ganapathy, S., Kulothungan, K., Nehemiah, H. K., & Kannan, A. (2019). An energy aware trust based secure routing algorithm for effective communication in wireless sensor networks. Wireless Personal Communications, 105(4), 1475–1490.

    Google Scholar 

  81. Bace, R. (2000). Intrusion detection. New York: Mac Millan Technical Publishing.

    Google Scholar 

  82. Ilgun, K., Kemmerer, R. A., & Porras, P. A. (1995). State transition analysis: A rule-based intrusion detection approach. Software Engineering, 21(3), 181–199.

    Google Scholar 

  83. Lindqvist, U., & Porras, P. A. (1999). Detecting computer and network misuse through the production-based expert system toolset (p-BEST). In IEEE symposium on security and privacy (pp. 146–161).

  84. Javitz, H. S., & Valdes, A. (1994). The NIDES statistical component: Description and justification. Annual report. Menlo Park, CA: Computer Science Laboratory, SRI International.

  85. da Silva, A. P., Martins, M., Rocha, B., Loureiro, A., Ruiz, L., & Wong, H. C. (2005). Decentralized intrusion detection in wireless sensor networks. In Proceedings of the 1st ACM international workshop on quality of service and security in wireless and mobile networks (Q2SWinet’05) (pp. 16–23). ACM Press.

  86. Onat, I., & Miri, A. (2005). An intrusion detection system for wireless sensor networks. In Proceeding of the IEEE international conference on wireless and mobile computing, networking and communications, (vol. 3, pp. 253–259). Montreal, Canada, Aout.

  87. Loo, C. E., Ng, M. Y., Leckie, C., & Palaniswami, M. (2005). Intrusion detection for routing attacks in sensor networks. International Journal of Distributed Sensor Networks, 2, 313–332.

    Google Scholar 

  88. Bhuse, V., & Gupta, A. (2006). Anomaly intrusion detection in wireless sensor networks. Journal of High Speed Networks, 15(1), 33–51.

    Google Scholar 

  89. Anjum, F., Subhadrabandhu, D., Sarkar, S., & Shetty, R. (2004). On optimal placement of intrusion detection modules in sensor networks. In BROADNETS ‘04: Proceedings of the first international conference on broadband networks (pp. 690–699).

  90. Roman, R., Zhou, J., & Lopez, J. (2006). Applying intrusion detection systems to wireless sensor networks. In Proceedings of IEEE consumer communications and networking conference (CCNC ‘06) (pp. 640-644). Las Vegas, USA.

  91. Su, C. C., Chang, K. M., Kue, Y. H., & Horng, M. F. (2005). The new intrusion prevention and detection approaches for clustering-based sensor networks. In Proceedings of 2005 IEEE wireless communications and networking conference (WCNC’05) (Vol. 4, pp. 1927–1932). New Orleans, L.A.

  92. Edith, C. H. N., Jiangchuan, L., & Michael, R. L. (2006). On the intruder detection for sinkhole attack in wireless sensor networks. In Proceedings of the IEEE international conference on communications (pp. 3383–3389).

  93. Chong, E. L., Mun Yong, N., Christopher, L., & Marimuthu, P. (2006). Intrusion detection for routing attacks in sensor networks. International Journal of Distributed Sensor Networks, 2, 313–332.

    Google Scholar 

  94. Wei-Tsung, S., Ko-Ming, C., & Yau-Hwang, K. (2007). ehip: An energy-efficient hybrid intrusion prohibition system for cluster-based wireless sensor networks. Computer Networks, 51, 1151–1168.

    MATH  Google Scholar 

  95. Krontiris, I., Dimitriou, T., & Freiling, F. C. (2007). Towards intrusion detection in wireless sensor networks. In Proceeding of the 13th European wireless conference, (EW’ 07), CiteSeer.

  96. Krontiris, I., Dimitriou, T., Giannetsos, T., & Mpasoukos, M. (2008). Intrusion detection of sinkhole attacks in wireless sensor networks. In M. Kutyłowski, J. Cichoń, & P. Kubiak (Eds.), Algorithmic aspects of wireless sensor networks (Vol. 4837, pp. 150–161). Berlin: Springer.

    Google Scholar 

  97. Liu, F., Cheng, X., & Chen, D. (2007). Insider attacker detection in wireless sensor networks. In INFOCOM 2007. 26th IEEE international conference on computer communications (pp. 1937–1945). IEEE.

  98. Yu, Z., & Jeffrey Tsai, J. P. (2008). A framework of machine learning based intrusion detection for wireless sensor networks. In IEEE International conference on sensor networks, ubiquitous, et trustworthy computing (pp. 272–279).

  99. Cohen, W. W., & Singer, Y. (1999) A simple, fast, and effective rule learner. In Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh Innovative applications of artificial intelligence conference (pp. 335–342).

  100. Krontiris, I., Benenson, Z., Giannetsos, T., Freiling, F. C., & Dimitriou, T. (2009). Cooperative intrusion detection in wireless sensor networks. In Proceedings of the 6th European conference on wireless sensor networks (pp. 263–278).

  101. Dimitriou, T., & Giannetsos, A. (2010). Wormholes no more? Localized wormhole detection and prevention in wireless networks. In R. Rajaraman, T. Moscibroda, A. Dunkels, & A. Scaglione (Eds.), Distributed computing in sensor systems (pp. 334–347). Berlin: Springer.

    Google Scholar 

  102. Coppolino, L., & Romano, L. (2010). Open issues in ids design for wireless biomedical sensor networks. In G. A. Tsihrintzis, E. Damiani, M. Virvou, R. J. Howlett, & L. C. Jain (Eds.), Intelligent interactive multimedia systems and services (pp. 231–240). Berlin: Springer.

    Google Scholar 

  103. Hai, T. H., Huh, E. N., & Jo, M. (2010). A lightweight intrusion detection framework for wireless sensor networks. Wireless Communications and Mobile Computing, 10(4), 559–572.

    Google Scholar 

  104. Shivaji, S. S., & Patil, A. B. (2015). Energy efficient intrusion detection scheme based on bayesian energy prediction in WSN. In 2015 Fifth international conference on advances in computing and communications (ICACC) (pp. 114–117). IEEE.

  105. Raza, F., Bashir, S., Tauseef, K., et al. (2015). Optimizing nodes proportion for intrusion detection in uniform and Gaussian distributed heterogeneous WSN. In 2015 12th International bhurban conference on applied sciences and technology (IBCAST) (pp. 623–628). IEEE.

  106. Larijani, H., Ahmad, J., & Mtetwa, N. (2019). A heuristic intrusion detection system for internet-of-things (IoT)”. In Intelligent computing-proceedings of the computing conference (pp. 86–98). Cham: Springer.

  107. Borkar, G. M., Patil, L. H., Dalgade, D., & Hutke, A. (2019). A novel clustering approach and adaptive SVM classifier for intrusion detection in WSN: A data mining concept. Sustainable Computing: Informatics and Systems, 23, 120–135.

    Google Scholar 

  108. Gül, M. (2016). Intrusion detection for wireless sensor networks using ant colony. In Signal processing and communication application conference (SIU), 2016 24th. (pp. 1453–1456). IEEE.

  109. Alaparthy, V. T., & Morgera, S. D. (2018). A multi-level intrusion detection system for wireless sensor networks based on immune theory. IEEE Access, 6, 47364–47373.

    Google Scholar 

  110. Wang, Y., Wu, X., Chen, H., et al. (2014). A granulometric size distribution based intrusion detection method for WSN. In 2014 9th International conference on communications and networking in China (CHINACOM) (pp. 1–6). IEEE.

  111. La, V. H., Fuentes, R., & Cavalli, A. R. (2016). A novel monitoring solution for 6LoWPAN-based wireless sensor networks. In 2016 22nd Asia-Pacific conference on communications (APCC) (pp. 230–237). IEEE.

  112. Boubiche, D. E., & Bilami, A. (2012). Cross layer intrusion detection system for wireless sensor network. International Journal of Network Security & Its Applications, 4(2), 35.

    Google Scholar 

  113. Selvakumar, K., Karuppiah, M., SaiRamesh, L., Islam, S. H., Hassan, M. M., Fortino, G., et al. (2019). Intelligent temporal classification and fuzzy rough set-based feature selection algorithm for intrusion detection system in WSNs. Information Sciences, 497, 77–90.

    Google Scholar 

  114. Hajisalem, V., & Babaie, S. (2018). A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection. Computer Networks, 136, 37–50.

    Google Scholar 

  115. Amouri, A., Morgera, S., Bencherif, M., & Manthena, R. (2018). A cross-layer, anomaly-based IDS for WSN and MANET. Sensors, 18(2), 651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homero Toral-Cruz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubiche, D.E., Athmani, S., Boubiche, S. et al. Cybersecurity Issues in Wireless Sensor Networks: Current Challenges and Solutions. Wireless Pers Commun 117, 177–213 (2021). https://doi.org/10.1007/s11277-020-07213-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07213-5

Keywords

Navigation