Skip to main content
Log in

Transparent Conductive Oxide-Based Multiband CPW Fed Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel multiband coplanar waveguide-fed slotted transparent antenna is presented. The structural design of the radiating element is based on the semicircular curves in the form of slots on the patch to achieve multi-band characteristics with improved bandwidth. The overall structure having a size of λ0/2.67 × λ0/2.11 achieves transparency and a lightweight due to the presence of Plexiglas as a substrate material and AgHT-8 as a conductive material including the circular slotted patch and related CPW feeding line at the center frequency of the lowest operation band. The proposed antenna has the multiband operation characteristics with the center frequencies of 2.58 GHz, 3.67 GHz, 6.2 GHz having the impedance bandwidth of 19.84% (2.27—2.77 GHz), 1.76% (3.61—3.74 GHz) and 53.58% (4.50–7.79 GHz) respectively. The agreement between the numerical computation and measurement results of RF performance characteristics point out the technical potential of the proposed optically transparent antenna for short range multiband versatile wireless applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O'Hara, B., & Petrick, A. (1999). The IEEE 802.11 Handbook: A Designer's Companion. New York, NY: IEEE Press.

    Google Scholar 

  2. Medeiros, C. R., Lima, E. B., Costa, J. R., & Fernandes, C. A. (2010). Wideband slot antenna for WLAN access points. IEEE Antennas and Wireless Propagation Letters,9, 79–82.

    Article  Google Scholar 

  3. Emadian, S. R., Ghobadi, C., Nourinia, J., Mirmozafari, M. H., & Pourahmadazar, J. (2012). Bandwidth enhancement of CPW-fed circle-like slot antenna with dual band-notched characteristic. IEEE Antennas and Wireless Propagation Letters,11, 543–546.

    Article  Google Scholar 

  4. Sim, C. Y. D., Chen, H. D., Chiu, K. C., & Chao, C. H. (2012). Coplanar waveguide-fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications. IET Microwaves, Antennas & Propagation,6(14), 1529–1535.

    Article  Google Scholar 

  5. Shao, J., Fang, G., Ji, Y. C., Tan, K., & Yin, H. (2013). A novel compact tapered-slot antenna for. IEEE Antennas and Wireless Propagation Letters,12, 972–975.

    Article  Google Scholar 

  6. Kumar, S. A., Raj, M. A., & Shanmuganantham, T. (2018). Analysis and design of CPW fed antenna at ISM band for biomedical applications. Alexandria Engineering Journal,57(2), 723–727.

    Article  Google Scholar 

  7. Niu, J.-W., & Zhong, S.-S. (2004). A CPW-fed broadband slot antenna with linear taper. Microwave and Optical Technology Letters,41(3), 218–221.

    Article  Google Scholar 

  8. Lin, C.-C., En-Zo, Yu, & Huang, C.-Y. (2012). Dual-band rhombus slot antenna fed by CPW for WLAN applications. IEEE Antennas and Wireless Propagation Letters,11, 362–364.

    Article  Google Scholar 

  9. Ojaroudi, N., & Ghadimi, N. (2014). Dual-band CPW-fed slot antenna for LTE and WiBro applications. Microwave and Optical Technology Letters,56(5), 1013–1015.

    Article  Google Scholar 

  10. Wang, C.-J., & Lin, C.-M. (2012). A CPW-fed open-slot antenna for multiple wireless communication systems. IEEE Antennas and Wireless Propagation Letters,11, 620–623.

    Article  Google Scholar 

  11. Sun, X., Zeng, G., Yang, H.-C., & Li, Y. (2012). A compact quadband CPW-fed slot antenna for M-WiMAX/WLAN applications. IEEE Antennas and Wireless Propagation Letters,11, 395–398.

    Article  Google Scholar 

  12. Li, Z., Zhu, X., & Yin, C. (2019). CPW-fed ultra-wideband slot antenna with broadband dual circular polarization. AEU-International Journal of Electronics and Communications,98, 191–198.

    Article  Google Scholar 

  13. Nithisopa, K., Nakasuwan, J., Songthanapitak, N., Anantrasirichai, N., & Wakabayashi, T. (2007). Design CPW fed slot antenna for wideband applications. Progr Electromagn Res, 3(7):1124–1127.

    Google Scholar 

  14. Desai, A., Upadhyaya, T. K., Patel, R. H., Bhatt, S., & Mankodi, P. (2018). Wideband high gain fractal antenna for wireless applications. Progress in Electromagnetics Research,74, 125–130.

    Article  Google Scholar 

  15. Lim, E. H., Leung, K. W., Fang, X., & Pan, Y. (2015). Transparent antennas: Wiley encyclopedia of electrical and electronics engineering (pp. 1–23). New York, NY: Wiley.

    Book  Google Scholar 

  16. Yasin, T., Baktur, R., Furse, C. (2001). A comparative study on two types of transparent patch antennas. In 2011 XXXth URSI general assembly and scientific symposium (pp. 1–4). IEEE, 2011.

  17. Desai, A., & Upadhyaya, T. (2018). Transparent dual band antenna with μ-negative material loading for smart devices. Microwave and Optical Technology Letters,60(11), 2805–2811.

    Article  Google Scholar 

  18. Haraty, M. R., Naser-Moghadasi, M., Lotfi-Neyestanak, A. A., & Nikfarjam, A. (2015). Improving the efficiency of transparent antenna using gold nanolayer deposition. IEEE Antennas and Wireless Propagation Letters,15, 4–7.

    Google Scholar 

  19. Desai, A., Upadhyaya, T., Palandoken, M., & Gocen, C. (2019). Dual band transparent antenna for wireless MIMO system applications. Microwave and Optical Technology Letters,61(7), 1845–1856.

    Article  Google Scholar 

  20. Wang, N., Tian, H., Guo, Z., Yang, D., Zhou, J., & Ji, Y. (2015). Bandwidth and gain enhancement of optically transparent 60-GHz CPW-fed antenna by using BSIS-UC-EBG structure. Photonics and Nanostructures-Fundamentals and Applications,15, 99–108.

    Google Scholar 

  21. Hautcoeur, J., Talbi, L., & Hettak, K. (2012). Feasibility study of optically transparent CPW-fed monopole antenna at 60-GHz ISM bands. IEEE Transactions on Antennas and Propagation,61(4), 1651–1657.

    Article  Google Scholar 

  22. Malek, M. A., Hakimi, S., Abdul Rahim, S. K., & Evizal, A. K. (2014). 0 Dual-band CPW-fed transparent antenna for active RFID tags. IEEE Antennas and Wireless Propagation Letters,14, 919–922.

    Article  Google Scholar 

  23. Rani, M. S. A., Abdul, S. K., RamleeKamarudin, M., Peter, T., Cheung, S. W., & Saad, B. M. (2014). Electromagnetic behaviors of thin film CPW-fed CSRR loaded on UWB transparent antenna. IEEE Antennas and Wireless Propagation Letters,13, 1239–1242.

    Article  Google Scholar 

  24. Hakimi, S., AbdulRahim, S. K., Abedian, M., Noghabaei, S. M., & Khalily, M. (2014). CPW-fed transparent antenna for extended ultrawideband applications. IEEE Antennas and Wireless Propagation Letters,13, 1251–1254.

    Article  Google Scholar 

  25. Katsounaros, A., Hao, Y., Collings, N., & Crossland, W. A. (2009). Optically transparent ultra-wideband antenna. Electronics Letters,45(14), 722–723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Desai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, A., Upadhyaya, T., Palandoken, M. et al. Transparent Conductive Oxide-Based Multiband CPW Fed Antenna. Wireless Pers Commun 113, 961–975 (2020). https://doi.org/10.1007/s11277-020-07262-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07262-w

Keywords

Navigation