Skip to main content
Log in

Improving the Performance of HALE UAV Communication Link Through MIMO Cooperative Relay Strategy

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

High-altitude long endurance unmanned aerial vehicles (HALE UAVs) are military and strategic UAVs that fly above the ground in the stratosphere. The ability of stealth technology and long flight time, has led to use of these UAVs for various military missions such as interception and spying, control guidance, remote sensing, navigation, surveillance and others. In this paper, improving the performance of HALE UAVs communication through multiple input multiple output (MIMO) cooperative relay with amplitude-and-forward strategy is investigated. In clear sky (without rain), two-hop system with line of sight (LoS) channels from source to relay and relay to destination is considered. In LoS-MIMO channels, due to correlation between the sub-channels, neither high-rank MIMO channel nor maximum capacity are achieved. However, based on antennas optimum placement that provide orthogonally between the received signals, maximum capacity will be obtained. The proposed scheme in this paper dramatically increases capacity relative to LoS-SISO channel and dual-hop MIMO Rayleigh up to 6 b/s/Hz and 2 b/s/Hz respectively. Also, simulation results verify exactness analytical expressions. However, rain as one of the most important ambient conditions causes the signal to be scattered in different directions. Therefore, LoS channel is changed to fading (Rayleigh) channel by increasing rainfall. In this case, telecommunication range is proposed as a meaningful metric, and outage probability (Poutage) based on telecommunication range for N-hop channel is extracted. In rainy conditions, simulation results show, the telecommunication range dramatically increases by increasing the number of relay UAVs for specified outage probability so that in the long-range, the outage probability decreases up to 50% with the increasing number of relays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baek, H., & Lim, J. (2018). Design of future UAV-relay tactical data link for reliable UAV control and situational awareness. IEEE Communications Magazine,56(10), 144–150.

    Article  Google Scholar 

  2. Han, S., Baek, J., & Han, Y. (2018). Deployment of multi-layer UAV relay system. In IEEE wireless communications and networking conference (WCNC), (pp. 15–18).

  3. Ebrahimi D., Sharafeddine S., Ho, P.-H., & Assi, C. (2018). UAV-Aided projection-based compressive data gathering in wireless sensor networks. IEEE Internet of Things Journal, 6(2), 1893–1905.

    Article  Google Scholar 

  4. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine,54(5), 36–42.

    Article  Google Scholar 

  5. Grace, D., & Mohorčič, M. (2011). Broadband communications via high altitude platforms. New York: Wiley.

    Google Scholar 

  6. Aragón-Zavala, A., Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2008). High-altitude platforms for wireless communications. New York: Wiley.

    Book  Google Scholar 

  7. Valavanis, K. P., & Vachtsevanos, G. J. (2015). Handbook of unmanned aerial vehicles. New York: Springer.

    Book  Google Scholar 

  8. Widiawan, A. K., & Tafazolli, R. (2007). High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications. Wireless Personal Communications,42(3), 387–404.

    Article  Google Scholar 

  9. Jin, S., McKay, M. R., Zhong, C. Wong, K.-K. (2010). Ergodic capacity analysis of amplify-and-forward MIMO dual-hop systems. IEEE Transactions on Information Theory, 56(5), 2204–2224.

    Article  MathSciNet  Google Scholar 

  10. Dziri, A., Ammar, A. B., & Terre, M. (2017), Performance analysis of MIMO cooperative relays for wireless sensor networks. In 13th International Wireless Communications and Mobile Computing Conference (IWCMC).

  11. Darsena, D., Gelli, G., & Verde, F. (2019). Design and performance analysis of multiple-relay cooperative MIMO networks. Journal of Communications and Networks,21(1), 25–32.

    Article  Google Scholar 

  12. He, Q., Wang, Z., Jianbin, H., & Blum, R. S. (2019). Performance gains from cooperative MIMO Radar and MIMO communication systems. IEEE Signal Processing Letters,26(1), 194–198.

    Article  Google Scholar 

  13. Waluyo, C. B., & Astuti, Y. (2017). Performance analysis for MIMO LTE on the high altitude platform station. In 4th international conference on electrical engineering, computer science and informatics (EECSI) (pp. 198–204).

  14. Hanna, A., Yan, H., & Cabric, D. (2019). Distributed UAV placement optimization for cooperative line-of-sight MIMO communications. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

  15. Michailidis, E. T., Efthymoglou, G., & Kanatas, A. G. (2008) Spatially correlated 3-D HAP-MIMO fading channels, international workshop on aerial & space platforms: Research, applications, vision. In conjunction with IEEE Globecom, New Orleans, LA..

  16. Dong, F., Li, M., Gong, X., Li, H., & Gao, F. (2015). Diversity performance analysis on multiple HAP networks. Sensors (Basel),15(7), 15398–15418. https://doi.org/10.3390/s150715398.

    Article  Google Scholar 

  17. Suraweera, H. A., Karagiannidis, G. K., & Smith, P. J. (2009). Performance analysis of the dual-hop asymmetric fading channel. IEEE Transaction on Wireless Communication. https://doi.org/10.1109/TWC.2009.080420.

    Article  Google Scholar 

  18. Wagner, J., Rankov, B., & Wittneben, A. (2007). On the asymptotic capacity of the Rayleigh fading amplify-and-forward MIMO relay channel. In Proceedings of IEEE International Symposium on Information Theory (ISIT) (pp. 2711–2715).

  19. Bohagen, F., Orten, P., & Oien, G. E. (2005). Construction and capacity analysis of high-rank line-of-sight MIMO channels. In Proceedings of the IEEE Wireless communications networking conference (pp. 432–437).

  20. Fukuda, H., Nishimura, T., Ogawa, Y., & Ohgane, T. (2015). Performance evaluation of full-dimension MIMO in indoor line-of-sight environments. In IEEE wireless communications and networking conference (WCNC).

  21. Cottatellucci, L., & Debbah, M. (2004). On the capacity of MIMO rice channels. In Proceedings of the 42nd Allerton conference.

  22. Michailidis, E. T., & Kanatas, A. G. (2009). Capacity optimized line-of-sight HAP-MIMO channels for fixed wireless access. In IWSSC 2009.

  23. Sarris, I., & Nix, A. R. (2007). Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component. IEEE Transactions on Vehicular Technology, 56(4), 2194–2202.

    Article  Google Scholar 

  24. Chen, X., Hu, X., Zhu, Q., Zhong, W., & Chen, B. (2018). Channel modeling and performance analysis for UAV relay systems. IEEE China Communication,15(12), 89–97.

    Google Scholar 

  25. Urosevic, U., Veljovic, Z., &-Djurisic, M. P. (2017). Improving cellular coverage through UAVs. In 20th international symposium on wireless personal multimedia communications (WPMC).

  26. Ou, Y. J., Zhuang, Y., Xue, Y., et al. (2013). UAV relay transmission scheme and its performance analysis over asymmetric fading channel. Acta Aeronanutica et Astronautica Sinica,34(1), 130–140. (in Chinese).

    Google Scholar 

  27. Shuaike, H., Yanwen, L., Hao, L., Quiming, Z., Shengkui, Z., Weizhen, C., et al. (2014). An analysis of the UAV relay coverage in mobile ad-hoc network. Applied Mechanics and Materials,577, 879–883.

    Article  Google Scholar 

  28. Bashir, E.-J., & Steele, R. (2001). Cellular communications using aerial platforms. IEEE Transactions on Vehicular Technology, 50(3), 686–700.

    Article  Google Scholar 

  29. International Telecommunication Union (ITU) (2003) Characteristics of precipitation for propagation modeling, ITU-R P.837-4, Geneva, Switzerland.

  30. International Telecommunication Union (ITU) (1997). Specific attenuation model for rain for use in prediction., ITU‐R P.838‐1, Geneva, Switzerland.

  31. Salo, J., El-Sallabi, H. M., & Vainikainen, P. (2006). The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas and Propagation,54(2), 639–643.

    Article  MathSciNet  Google Scholar 

  32. The Wolfram Functions Site. (2018). Available from http://functions.wolfram.com

  33. Erceg, V., Fortune, S. F., Ling, J., Rustako, A. J., Jr., & Valenzuela, R. A. (1997). Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments. IEEE Journal on Selected Areas in Communications,15(4), 677–684.

    Article  Google Scholar 

  34. Mathai, A. M., & Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mahdinejad Noori or Mohammadhossein Madani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

We derive a simplified criterion for the design of an orthogonal MIMO (2 × 2 × 2) dual-hop architecture in pure LoS as shown in Fig. 1. Starting from Eqs. (17), (22)

$$\left| {{d}_{11}}-{{d}_{12}}-{{d}_{21}}+{{d}_{22}} \right|=\left(2m+1 \right)\frac{\lambda}{2}\quad m=0,1,2,\ldots$$
(42)

The Euclidean distances between all elements for the first hop configuration shown in Fig. 1 are given by

$$\begin{aligned}{{d}_{11}}&=D=\frac{\left| {{H}_{R1}}-{{H}_{T}} \right|}{sin{{\beta}_{1}}}\\{{d}_{12}}&=\sqrt{{{\left(D+{{S}_{R}}cos{{\theta}_{R}}+{{S}_{R}}cos{{\varphi}_{R}} \right)}^{2}}+{{\left({{S}_{R}}sin{{\theta}_{R}} \right)}^{2}}+{{\left({{S}_{R}}cos{{\theta}_{R}}sin{{\varphi}_{R}} \right)}^{2}}}\\{{d}_{21}}&=\sqrt{{{\left(D-{{S}_{S}}cos{{\theta}_{S}} \right)}^{2}}+{{\left({{S}_{S}}sin{{\theta}_{S}} \right)}^{2}}}\\{{d}_{22}}&=\sqrt{{{\left(D+{{S}_{R}}cos{{\theta}_{R}}+{{S}_{R}}cos{{\varphi}_{R}}-{{S}_{S}}cos{{\theta}_{S}} \right)}^{2}}+{{\left({{S}_{R}}sin{{\theta}_{R}}-{{S}_{S}}sin{{\theta}_{S}} \right)}^{2}}+{{\left({{S}_{R}}cos{{\theta}_{R}}sin{{\varphi}_{R}} \right)}^{2}}}\end{aligned}$$
(43)

Equations (43) can be simplified using the following first-order Taylor series approximation

$$\sqrt{{{\left(A+B \right)}^{2}}+{{C}^{2}}}\approx \left(A+B \right)+\frac{{{C}^{2}}}{2\left(A+B \right)}$$
(44)

This approximation is valid for \({{\left(A+B \right)}^{2}}\gg {{C}^{2}}\), which is a reasonable assumption for the targeted application, providing that \(d \gg S\). Then, (43) become, respectively

$$\begin{aligned}{{d}_{12}}&=D+{{S}_{R}}cos{{\theta}_{R}}+{{S}_{R}}cos{{\varphi}_{R}}+\frac{{{\left({{S}_{R}}sin{{\theta}_{R}} \right)}^{2}}+{{\left({{S}_{R}}cos{{\theta}_{R}}sin{{\varphi}_{R}} \right)}^{2}}}{2D}\\{{d}_{21}}&=D-{{S}_{S}}cos{{\theta}_{S}}+\frac{{{\left({{S}_{S}}sin{{\theta}_{S}} \right)}^{2}}}{2D}\\{{d}_{22}}&=D+{{S}_{R}}cos{{\theta}_{R}}+{{S}_{R}}cos{{\varphi}_{R}}-{{S}_{S}}cos{{\theta}_{S}}+\frac{{{\left({{S}_{R}}sin{{\theta}_{R}}-{{S}_{S}}sin{{\theta}_{S}} \right)}^{2}}+{{\left({{S}_{R}}cos{{\theta}_{R}}sin{{\varphi}_{R}} \right)}^{2}}}{2D}\end{aligned}$$
(45)

Finally, using Eq. (42) becomes

$${{S}_{S}}{{S}_{R}}=\left(m+\frac{1}{2} \right)\frac{ \lambda\left|{{H}_{R1}}-{{H}_{T}} \right|}{sin{{\beta}_{1}}sin{{\theta}_{S}}sin{{\theta}_{R}}} \quad m=0,1,2,\ldots$$
(46)

In the same way

$$\left| d_{11}^{\prime}+d_{22}^{\prime}-d_{12}^{\prime}-d_{21}^{\prime} \right|=\left(2{m}^{\prime}+1 \right)\frac{\lambda}{2}$$
(47)

The Euclidean distances between all elements for the second hop configuration shown in Fig. 1 are given by

$$\begin{aligned} d_{11}^{\prime}&={{D}^{\prime}}=\frac{\lambda\left| {{H}_{R2}}-{{H}_{R1}} \right|}{sin{{\beta}_{2}}}\\ d_{12}^{\prime}&=\sqrt{{{\left({{D}^{\prime}}+{{S}_{D}}cos{{\theta}_{D}}+{{S}_{D}}cos{{\varphi}_{D}} \right)}^{2}}+{{\left({{S}_{D}}sin{{\theta}_{D}} \right)}^{2}}+{{\left({{S}_{D}}cos{{\theta}_{D}}sin{{\varphi}_{D}} \right)}^{2}}}\\ d_{21}^{\prime}&=\sqrt{{{\left({{D}^{\prime}}-{{S}_{R}}cos{{\theta}_{R}}-{{S}_{R}}cos{{\varphi}_{R}} \right)}^{2}}+{{\left({{S}_{R}}sin{{\theta}_{R}} \right)}^{2}}+{{\left({{S}_{R}}cos{{\theta}_{R}}sin{{\varphi}_{R}} \right)}^{2}}} \\ d_{22}^{\prime}&=\sqrt{{{\left({{D}^{\prime}}+{{S}_{D}}cos{{\theta}_{D}}+{{S}_{D}}cos{{\varphi}_{D}}-{{S}_{R}}cos{{\theta}_{R}}-{{S}_{R}}cos{{\varphi}_{R}} \right)}^{2}}+{{\left({{S}_{D}}sin{{\theta}_{D}}-{{S}_{R}}sin{{\theta}_{R}} \right)}^{2}}}+\ldots \\&\quad+{{\left({{S}_{D}}cos{{\theta}_{D}}sin{{\varphi}_{D}}-{{S}_{R}}cos{{\theta}_{R}}sin{{\varphi}_{R}} \right)}^{2}} \end{aligned}$$
(48)
$$\begin{aligned} & d_{12}^{\prime } = D^{\prime } + S_{D} cos\theta_{D} + S_{D} cos\varphi_{D} + \frac{{\left( {S_{D} sin\theta_{D} } \right)^{2} + \left( {S_{D} cos\theta_{D} sin\varphi_{D} } \right)^{2} }}{{2D^{\prime } }} \\ & d_{21}^{'} = D^{\prime } - S_{R} cos\theta_{R} - S_{R} cos\varphi_{R} + \frac{{\left( {S_{R} sin\theta_{R} } \right)^{2} + \left( {S_{R} cos\theta_{R} sin\varphi_{R} } \right)^{2} }}{{2D^{\prime } }} \\ & d_{22}^{\prime } = D^{\prime } + S_{D} cos\theta_{D} + S_{D} cos\varphi_{D} - S_{R} cos\theta_{R} - S_{R} cos\varphi_{R} \\ & \qquad + \frac{{\left( {S_{D} sin\theta_{D} - S_{R} sin\theta_{R} } \right)^{2} + \left( {S_{D} cos\theta_{D} sin\varphi_{D} - S_{R} cos\theta_{R} sin\varphi_{R} } \right)^{2} }}{{2D^{\prime } }} \\ \end{aligned}$$

Use Eq. (47) Finally,

$${{S}_{R}}{{S}_{D}}=\left({m}^{\prime}+\frac{1}{2} \right)\frac{\lambda\left|{{H}_{R2}}-{{H}_{R1}} \right|}{sin{{\beta}_{2}}\left(sin{{\theta}_{R}}sin{{\theta}_{D}}+cos{{\theta}_{R}}cos{{\theta}_{D}}sin{{\varphi}_{R}}sin{{\varphi}_{D}} \right)} \quad {m}^{\prime}=0,1,2,\ldots$$
(49)

Appendix 2

Lemma 1

To compute the cumulative distribution of Y = g(X) in terms of the cumulative distribution of X, note that

$${{F}_{Y}}\left(y \right)=P\left(Y\le y \right)=P\left\{g\left(X \right)\le y \right\}=P\left\{X\le {{g}^{-1}}\left(y \right) \right\}={{F}_{X}}\left({{g}^{-1}}\left(y \right) \right)$$
(50)

For g decreasing within the range of X:

$${{F}_{Y}}\left(y \right)=P\left(Y\le y \right)=P\left\{g\left(X \right)\le y \right\}=P\left\{X\ge {{g}^{-1}}\left(y \right) \right\}=1-{{F}_{X}}\left({{g}^{-1}}\left(y \right) \right)$$
(51)

Appendix 3

For N = 1 and N = 2, the \({\text{G}}_{{1,\,\,\,{\text{N}} + 1}}^{{{\text{N}},\,\,1}} \left( . \right)\) function in Eq. (37) reduces to a Rayleigh and double-Rayleigh distribution, respectively. When N = 1, the following equation results are obtained:

[31, (Eq. §07.34.03.0273.01)]

$$G\begin{array}{*{20}c} {1,1} \\ {1,2} \\ \end{array} \left( {z\left| {\begin{array}{*{20}c} {\frac{1}{2}} \\ {\frac{1}{2}, - \frac{1}{2}} \\ \end{array} } \right.} \right) = e^{ - z} z^{{\frac{1}{2}}} \varGamma \left( 0 \right)L_{ - 1}^{1} \left( z \right)\left| {z = \left( {2\left( {\frac{4\pi d}{\lambda }} \right)^{2} } \right)^{ - 1} \left( {\frac{A}{{\gamma_{eq} }}} \right)^{2} } \right.$$
(52)

In Eq. (52) \(\text{L}_{\vartheta}^{\uplambda}\left(\text{z} \right)\) is the Laguerrel function, that is, [31, (Eq. § 07.03.26.0002.01)]

$$L_{\vartheta}^{\lambda}\left(z \right)=\frac{{{\left(\lambda +1 \right)}_{\vartheta}}}{\varGamma\left(\vartheta +1 \right)} 1{{F}_{1}}\left(-\vartheta;\lambda;z \right) ; -\lambda \in {{N}^{+}}$$
(53)

For \(\uptheta =-1\) and \(\uplambda = 1\), Eq. (53) reduces to \(\frac{{\Gamma \left( 1 \right)}}{{\Gamma \left( 0 \right)}}1{\text{F}}_{1} \left( {1;1;{\text{z}}} \right)\). Moreover, for \(\text{a}=1,\text{b}=1\), the hypergeometric function \(1{{\text{F}}_{1}}\left(\text{a};\text{b};\text{z} \right)\) is: \(-\frac{1}{\text{z}}\left(1-{{\text{e}}^{\text{z}}} \right)\) [31, (Eq. § 07.20.03.0026.01)]. Hence For N = 1:

$${{F}_{{{L}_{f}}}}\left(d \right)=2{{\left({{2}^{1}}{{\left(\frac{4\pi d}{\lambda} \right)}^{2}} \right)}^{-\frac{1}{2}}} \left(\frac{A}{{{\gamma}_{req}}} \right)\left(1-{{e}^{-z}} \right)\left| z=2{{\left(\frac{4\pi d}{\lambda} \right)}^{2}})^{-1}{{\left(\frac{A}{{{\gamma}_{eq}}} \right)}^{2}} , \right. \quad {{P}_{outage}}=1-{{F}_{{{L}_{f}}}}\left(d \right)$$
(54)

For N = 2,

$$f_{{L_{f} }} \left( d \right) = 2\left( {2^{2} \left( {\frac{4\pi d}{\lambda }} \right)^{2} } \right)^{{ - \frac{1}{2}}} G_{0,\;\;2}^{2,\;\;0} \left( {\left( {2^{2} \left( {\frac{4\pi d}{\lambda }} \right)^{2} } \right)^{ - 1} \left( {\frac{A}{{\gamma_{eq} }}} \right)^{2} \left| {\begin{array}{*{20}c} - \\ {\frac{1}{2},\frac{1}{2}} \\ \end{array} } \right.} \right)$$
(55)

From [31, (Eq. § 07.34.03.0605.01)]:

$$\begin{aligned} G\begin{array}{*{20}c} {2,0} \\ {0,2} \\ \end{array} \left( {z\left| {\begin{array}{*{20}c} - \\ {\frac{1}{2},\frac{1}{2}} \\ \end{array} } \right.} \right) & = 2z^{{\frac{1}{2}\left( {b + c} \right)}} K_{b - c} \left( {2\sqrt z } \right)\left| {b,c = \frac{1}{2}} \right. \\ & = 2\sqrt z K_{0} \left( {2\sqrt z } \right)\left| {z = \left( {2^{2} \left( {\frac{4\pi d}{\uplambda}} \right)^{2} } \right)^{ - 1} \left( {\frac{A}{{\gamma_{eq} }}} \right)^{2} } \right. \\ \end{aligned}$$
(56)

In Eq. (56), \({{\text{K}}_{\text{v}}}\left(. \right)\) is the modified Bessel function of the second kind.

Replacing G-function in Eq. (55) with Eq. (56) and integrating the result, we obtain the following equation.

$${{F}_{{{L}_{f}}}}\left(d \right)=\left. -2{{\left({{2}^{2}}{{\left(\frac{4\pi d}{\lambda} \right)}^{2}} \right)}^{-\frac{1}{2}}} \left(\frac{A}{{{\gamma}_{req}}} \right)2\sqrt{z}{{K}_{1}}\left(2\sqrt{z} \right) \right|z={{\left({{2}^{2}}{{\left(\frac{4\pi d}{\lambda} \right)}^{2}} \right)}^{-1}}{{\left(\frac{A}{{{\gamma}_{eq}}} \right)}^{2}} ,\quad {{P}_{outage}}=1-{{F}_{{{L}_{f}}}}\left(d \right)$$
(57)

Applying N = 3, 4, and 5 to Eq. (37), will be achieved Eqs. (58), (59), and (60), respectively:

For N = 3:

$$\begin{aligned} F_{{L_{f} }} \left( d \right) & = \frac{z}{2}\mathop \sum \limits_{k = 0}^{\infty } \frac{{\left( { - 1} \right)^{k} }}{{\left( k \right)!^{3} \left( {k + 1} \right)}} \times \left. {\left[ {ln^{2} \left( z \right) - 2ln\left( z \right)C_{3} \left( k \right) + C_{3}^{\left( 1 \right)} \left( k \right) + \left[ {C_{3} \left( k \right)} \right]^{2} } \right]z^{k} } \right|z \\ & = \left( {2^{3} \left( {\frac{4\pi d}{\lambda }} \right)^{2} } \right)^{ - 1} \left( {\frac{A}{{\gamma_{eq} }}} \right)^{2} \\ \end{aligned}$$
(58)

For N = 4:

$$\begin{aligned} {\text{F}}_{{{\text{L}}_{\text{f}} }} \left( {\text{d}} \right) & = \frac{{\text{z}}}{6}\mathop \sum \limits_{{{\text{k}} = 0}}^{\infty } \frac{1}{{\left( {\text{k}} \right)!^{4} \left( {{\text{k}} + 1} \right)}} \\ &\quad \times \left[ { - { \ln }^{3} \left( {\text{z}} \right) + 3\ln^{2} \left( {\text{z}} \right){\text{C}}_{4} \left( {\text{k}} \right) - 3\ln \left( {\text{z}} \right)\left[ {{\text{C}}_{4}^{\left( 1 \right)} \left( {\text{k}} \right) + \left[ {{\text{C}}_{4} \left( {\text{k}} \right)} \right]^{2} } \right] + {\text{C}}_{4}^{\left( 2 \right)} \left( {\text{k}} \right) + 3{\text{C}}_{4}^{\left( 1 \right)} \left( {\text{k}} \right){\text{C}}_{4} \left( {\text{k}} \right) + \left[ {{\text{C}}_{4} \left( {\text{k}} \right)} \right]^{3} } \right]\left. {{\text{z}}^{\text{k}} } \right|{\text{z}} \\ & = \left( {2^{4} \left( {\frac{{4{{\uppi d}}}}{\lambda }} \right)^{2} } \right)^{ - 1} \left( {\frac{{\text{A}}}{{{{\upgamma }}_{\text{eq}} }}} \right)^{2} \\ \end{aligned}$$
(59)

For N = 5:

$$\begin{aligned} {\text{F}}_{{{\text{L}}_{\text{f}} }} \left( {\text{d}} \right) & = \frac{{\text{z}}}{24}\mathop \sum \limits_{{{\text{k}} = 0}}^{\infty } \frac{{\left( { - 1} \right)^{\text{k}} }}{{\left( {\text{k}} \right)!^{5} \left( {{\text{k}} + 1} \right)}} \\ & \quad \times \left[ {{ \ln }^{4} \left( {\text{z}} \right) - 4\ln^{3} \left( {\text{z}} \right){\text{C}}_{5} \left( {\text{k}} \right) + 6\ln^{2} \left( {\text{z}} \right)\left[ {{\text{C}}_{5}^{\left( 1 \right)} \left( {\text{k}} \right) + \left[ {{\text{C}}_{5} \left( {\text{k}} \right)} \right]^{2} } \right] - 4\ln \left( {\text{z}} \right)\left[ {{\text{C}}_{5}^{\left( 2 \right)} \left( {\text{k}} \right) + 3{\text{C}}_{5}^{\left( 1 \right)} \left( {\text{k}} \right){\text{C}}_{5} \left( {\text{k}} \right) + \left[ {{\text{C}}_{5} \left( {\text{k}} \right)} \right]^{3} } \right] + {\text{C}}_{5}^{\left( 3 \right)} \left( {\text{k}} \right) + {\text{C}}_{5}^{\left( 2 \right)} \left( {\text{k}} \right){\text{C}}_{5} \left( {\text{k}} \right) + 3\left[ {{\text{C}}_{5}^{\left( 1 \right)} \left( {\text{k}} \right)} \right]^{2} + 6\left[ {{\text{C}}_{5} \left( {\text{k}} \right)} \right]^{2} {\text{C}}_{5}^{\left( 1 \right)} \left( {\text{k}} \right) + \left[ {{\text{C}}_{5} \left( {\text{k}} \right)} \right]^{4} } \right]{\text{z}}^{\text{k}} \left| {\text{z}} \right. \\ = \left( {2^{5} \left( {\frac{{4{{\uppi d}}}}{\lambda }} \right)^{2} } \right)^{ - 1} \left( {\frac{{\text{A}}}{{{{\upgamma }}_{\text{eq}} }}} \right)^{2} \\ \end{aligned}$$
(60)

where \({\text{C}}_{\text{N}}^{{\left( {\text{l}} \right)}} \left( {\text{k}} \right) = {\text{B}}_{\text{N}}^{{\left( {\text{l}} \right)}} \left( {\text{k}} \right) + \frac{{{\text{l}}!}}{{\left( {{\text{k}} + 1} \right)^{{{\text{l}} + 1}} }}\). In addition, \({\text{B}}_{\text{N}}^{{\left( {\text{l}} \right)}} \left( {\text{k}} \right)\) is:

$${\text{B}}_{\text{N}}^{{\left( {\text{l}} \right)}} \left( {\text{k}} \right) = {\text{N}}\left[ {\uppsi^{{\left( {\text{l}} \right)}} \left( 1 \right) + \left( { - 1} \right)^{{{\text{l}} + 1}} \left[ {\uppsi^{{\left( {\text{l}} \right)}} \left( 1 \right) -\uppsi^{{\left( {\text{l}} \right)}} \left( {{\text{k}} + 1} \right)} \right]} \right]\quad {\text{for}}\quad {\text{N}} \ge 2$$
(61)

In Eq. (38), \(\uppsi^{{\left( {\text{p}} \right)}} \left( {\text{x}} \right) = \left( {\frac{{{\text{d}}^{\text{p}} }}{{{\text{x}}^{\text{p}} }}} \right)\uppsi\left( {\text{x}} \right) = \left( {\frac{{{\text{d}}^{{{\text{p}} + 1}} }}{{{\text{x}}^{{{\text{p}} + 1}} }}} \right)\ln \left( {\text{x}} \right)\) is the pth polygamma function.

Appendix 4

In fact, Eq. (7) is a mathematical equation defined to simplify the capacity formula in Eq. (4). In this respect, the amount of \(\psi\) defined by comparing Eqs. (4) and (6)

$$\psi =H_{RD}^{\dagger}{R}_{n}^{-{1}}{{H}_{RD}}$$
(62)

By utilizing the singular value decomposition (SVD) of \({\text{H}}_{\text{RD}}\)

$${{H}_{RD}}={{U}_{RD}}\Lambda_{RD}^{1/2}V_{RD}^{\dagger}$$
(63)

where \(\Uplambda_{\text{RD}}^{1/2}=\text{diag}\left\{\sqrt{\lambda_{1}},\ldots,\sqrt{\lambda_{ \hbox{min} \left({{\text{N}}_{\text{D}}},{{\text{N}}_{\text{R}}} \right)}} \right\}\) is a \({{\text{N}}_{\text{D}}}\times {{\text{N}}_{\text{R}}}\) diagonal matrix of singular values \(({{\sigma}_{\text{i}}})\) of \({{\text{H}}_{\text{RD}}}\). \({{\text{U}}_{\text{RD}}}\in {{\text{C}}^{{{\text{N}}_{\text{D}}}\times {{\text{N}}_{\text{D}}}}}\) and \({{\text{V}}_{\text{RD}}}\in {{\text{C}}^{{{\text{N}}_{\text{R}}}\times {{\text{N}}_{\text{R}}}}}\) are unitary matrices containing the respective eigenvectors. As defined in manuscript for the \({{\text{R}}_{\text{n}}}\)

$$R_{n} = I_{N_{D} } + aH_{RD} H_{RD}^{\dag } = I_{{N_{D} }} + a U_{RD} \varLambda_{RD} V_{RD}^{\dag } = \left[ \begin{array}{*{20}c} {1 + a \lambda_{1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {1 + a \lambda_{{N_{R} }} } \\ \end{array} \right].$$
(64)

When \(\hbox{min} \left({{\text{N}}_{\text{D}}}, {{\text{N}}_{\text{R}}} \right)={{\text{N}}_{\text{R}}}\,\,{\text{or}}\,\, {{\text{N}}_{\text{R}}}\le {{\text{N}}_{\text{D}}}\) and

$$R_{n} = \left[ {\begin{array}{*{20}c} {1 + a\lambda_{1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {1 + a\lambda_{{N_{D} }} } \\ \end{array} } \right] .$$
(65)

When \(\hbox{min} \left({{\text{N}}_{\text{D}}},{{\text{N}}_{\text{R}}} \right)={{\text{N}}_{\text{D}}}\,\,{\text{or}} \,\,{{\text{N}}_{\text{R}}} > {{\text{N}}_{\text{D}}}\), finally \({\text{R}}_{\text{n}}^{ - 1}\) according to the theorem

diag(a1,…, an)−1 = diag(a−11,…, a−1n) is equal to

$$R_{n}^{ - 1} = \left[ {\begin{array}{*{20}c} {\frac{1}{{ 1 +{\text{a}}\lambda_{ 1} }}} & {\quad \cdots } & {\quad 0} \\ \vdots & \quad \ddots & {\quad \vdots } \\ 0 & {\quad \cdots } & {\quad \frac{1}{{ 1 +{\text{a}}\lambda_{{{\text{N}}_{\text{R}} }} }}} \\ \end{array} } \right] = \begin{array}{*{20}c} {{\text{diag}}\left\{ {\frac{ 1}{{ 1 +{\text{a}}\lambda_{ 1} }} , \ldots ,\frac{ 1}{{ 1 +{\text{a}}\lambda_{{{\text{N}}_{\text{R}} }} }}} \right\}} \\ {{\text{N}}_{\text{R}} \le {\text{N}}_{\text{D}} } \\ \end{array}$$
(66)

or

$$R_{n}^{ - 1} = \left[ {\begin{array}{*{20}c} {\frac{1}{{ 1 + {\text{a}}\lambda_{ 1} }}} & {\quad \cdots } & {\quad 0} \\ \vdots & {\quad \ddots } & {\quad \vdots } \\ 0 & {\quad \cdots } & {\quad \frac{1}{{ 1 +{\text{a}}\lambda_{{{\text{N}}_{\text{D}} }} }}} \\ \end{array} } \right] = \begin{array}{*{20}c} {{\text{diag}}\left\{ {\frac{ 1}{{ 1 +{\text{a}}\lambda_{ 1} }} , \ldots ,\frac{ 1}{{ 1 +{\text{a}}\lambda_{{{\text{N}}_{\text{D}} }} }}} \right\}} \\ {{\text{N}}_{\text{R}} {\text{ > N}}_{\text{D}} } \\ \end{array}$$
(67)

Finally

$$\Psi = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\text{diag}}\left\{ {\frac{{\lambda_{ 1} }}{{ 1 +{\text{a}}\lambda_{ 1} }} ,\ldots ,\frac{{\lambda_{{{\text{N}}_{\text{R}} }} }}{{ 1 +{\text{a}}\lambda_{{{\text{N}}_{\text{R}} }} }}} \right\}} \\ {{\text{N}}_{\text{R}} \le {\text{N}}_{\text{D}} } \\ \end{array} } \\ {\begin{array}{*{20}c} {{\text{diag}}\left\{ {\frac{{\lambda_{ 1} }}{{ 1 +{\text{a}}\lambda_{ 1} }} ,\ldots ,\frac{{\lambda_{{{\text{N}}_{\text{D}} }} }}{{ 1 +{\text{a}}\lambda_{{{\text{N}}_{\text{D}} }} }},\overbrace {0, \ldots ,0}^{{{\text{N}}_{\text{R}} - {\text{N}}_{\text{D}} }}} \right\}} \\ {{\text{N}}_{\text{R}} {\text{ > N}}_{\text{D}} } \\ \end{array} } \\ \end{array} } \right.$$
(68)

In condition \({\text{N}}_{\text{R}} {\text{ > N}}_{\text{D}}\), \({{\text{N}}_{\text{R}}}-{{\text{N}}_{\text{D}}}\) zero added to the diagonal matrix to be the same rank with \({{I}_{{{N}_{R}}}}\). For MIMO (2 × 2) system and \({{\text{N}}_{\text{R}}}\le {{\text{N}}_{\text{D}}}\), the ψ value is simplified as follows

$$\Psi = \left[ {\begin{array}{*{20}c} {\frac{{\lambda_{1} }}{{1 + a\lambda_{1} }}} & {\quad 0} \\ 0 & {\quad \frac{{\lambda_{2} }}{{1 + a\lambda_{2} }}} \\ \end{array} } \right]$$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarihi, M., Mahdinejad Noori, M. & Madani, M. Improving the Performance of HALE UAV Communication Link Through MIMO Cooperative Relay Strategy. Wireless Pers Commun 113, 1051–1071 (2020). https://doi.org/10.1007/s11277-020-07267-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07267-5

Keywords

Navigation