Abstract
This paper presents a metamaterial inspired antenna with tapered patch for operating in 2.5 GHz, 3.5 GHz, 4.6 GHz, and 5.8 GHz frequencies of WLAN/WiMAX applications. The resonant modes obtained by the implementation of CSRR and modified patch structure. The negative permittivity characteristics of the CSRR is discussed along with its equivalent circuit. The proposed antenna is also fabricated using the low cost FR4 Epoxy substrate with dielectric permittivity of 4.4, height of the substrate is 1.6 mm and loss tangent 0.02 and measured for the validation of the design. The proposed antenna achieved gains of 6.06 dBi, 12.1 dBi, 15.1 dBi, 4.6 dBi in 2.5 GHz, 3.5 GHz, 4.6 GHz, and 5.8 GHz respectively. Stable radiation patterns were also observed in the same operating regions.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig7_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07283-5/MediaObjects/11277_2020_7283_Fig11_HTML.png)
Similar content being viewed by others
References
Balanis, C. A. (1997). Antenna theory: Analysis and design (2nd ed.). New York: Wiley.
Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of e and µ, soviet physics uspekhi, 10(4),509–514.
Pendry, J. B., et al. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques,47(11), 2075–2084.
Alibakhshi-Kenari, M., et al. (2016). Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers. IET Microwaves, Antennas & Propagation,10(15), 1682–1691.
Zhai, H., et al. (2017). A low-profile dual-band dual polarized antenna with an AMC surface for WLAN applications. IEEE Antennas and Wireless Propagation Letters,16, 2692–2695.
Cai, T., et al. (2015). Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials. IEEE Transactions on Antennas and Propagation,63(5), 2306–2311.
Li, L. W., et al. (2010). A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters,96(16), 164101–164103.
Mitra, D., et al. (2015). Design of compact and high directive slot antennas using grounded metamaterial slab. IEEE Antennas and Wireless Propagation Letters,14, 811–814.
Li, M., Zhang, Y., & Tang, M. (2018). Design of a compact, wideband, bidirectional antenna using index-gradient patches. IEEE Antennas and Wireless Propagation Letters,17, 1218–1222.
Huang, Y., et al. (2016). Polarization conversion of metasurface for the application of wideband low-profile circular polarization. Applied Physics Letters,109, 054101-1–054101-5.
Zhu, H. L., et al. (2013). Linear to circular polarization conversion using metasurface. IEEE Transactions on Antennas and Propagation,61(9), 4615–4622.
Ali, T., Aw, M. S., & Biradar, R. C. (2018). A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications. International Journal of Microwave and Wireless Technologies. https://doi.org/10.1017/S1759078718000272.
Rajkumar, R., & Kommuri, U. K. (2018). A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation. Wireless Personal Communication. https://doi.org/10.1007/s11277-018-5749-7.
Ali, T., Khaleeq, M. M., Pathan, S., & Biradar, R. C. (2017). A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications. Microwave and Optical Technology Letters,60, 79–85. https://doi.org/10.1002/mop.30921.
Zainud-Deen, S. H., Badawy, M. M., & Malhat, H. A. (2019). Reconfigurable transparent all-dielectric water-based metamaterial for microstrip patch antenna gain enhancement. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06868-z.
Boufrioua, A. (2019). Frequency reconfigurable antenna designs using PIN diode for wireless communication applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06816-x.
Funding
The authors declare that they have not received any funding for this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Human and Animal Rights
The authors declare that there is no human participants and /or Animals used in in this research.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Geetharamani, G., Aathmanesan, T. A Metamaterial Inspired Tapered Patch Antenna for WLAN/WiMAX Applications. Wireless Pers Commun 113, 1331–1343 (2020). https://doi.org/10.1007/s11277-020-07283-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-020-07283-5