Skip to main content

Advertisement

Log in

IoT Technologies in Agricultural Environment: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Agriculture functions as an indispensable act in the world by meeting one of the basic needs of an individual named food, in spite of the fact that the assets are being reduced day by day and also various other problems arise irrespective of biases. In this scenario, unlike many technologies, when every other way fails to sense the routine of a crop, automation takes place by connecting to the invincible storages like cloud and streamlining the process by figuring its hardware and implementing user-friendly internet platform. IoT has set a benchmark in the technologies and has become a backbone to agriculture. This advancement in technology helps in farming automation, which helps in shaping a farmer’s workspace, ensuring them with device management, connectivity management, and productivity as a result along with remote management. This paper gives an insight on introduction to IoT, agriculture IoT, emerging wireless technologies of IoT, architectures and applications of IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. https://www.dataversity.net/brief-history-internet-things/. Accessed April 10, 2019.

  2. Bahga, A., & Vijay, M. (2015). Internet of things: A hands-on approach (1st ed.). New Delhi: VPT.

    Google Scholar 

  3. Singh, D., Tripathi, G., Jara, A. J. (2014). A survey of internet-of-things: Future vision, architecture, challenges, and services. In Proceedings of IEEE world forum on internet of things, At Seoul (pp. 287–292). 10.1109/WF-IoT.2014.6803174.

  4. Abhishek, K., & Sanmeet, K. (2019). Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture,157, 218–223. https://doi.org/10.1016/j.compag.2018.12.039.

    Article  Google Scholar 

  5. Lavanya, M., & Srinivasan, S. (2018). A survey on agriculture and greenhouse monitoring using IOT and WSN. International Journal of Engineering & Technology,7, 673. https://doi.org/10.14419/ijet.v7i2.33.15473.

    Article  Google Scholar 

  6. Reddy, G. S., Anuja, C. M., Manjunath, C. R., & Shetty, S. (2018). Smart agriculture by monitoring moisture pH levels in soil. International Journal of Advance Research, Ideas and Innovations in Technology,4(3), 408–411.

    Google Scholar 

  7. Arunlal, K. S., & Rajkiran, S. N. (2018). Smart agriculture: IoT based precise and productive farming approach. International Journal of advanced Research, Ideas and Innovations in Technology,4(6), 771–775.

    Google Scholar 

  8. Basnet, B., & Bang, J. (2018). The state-of-the-art of knowledge-intensive agriculture: A review on applied sensing systems and data analytics. Journal of Sensors,2018, 1–13. https://doi.org/10.1155/2018/3528296.

    Article  Google Scholar 

  9. https://www.businessinsider.com/internet-of-things-smart-agriculture-2016-10/. Accessed May 2, 2019.

  10. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/. Accessed June 2, 2019.

  11. Nayyar, A., & Puri, V. (2016). Smart farming: IoT based smart sensors agriculture stick for live temperature and moisture monitoring using Arduino, cloud computing & solar technology (pp. 673–680). https://doi.org/10.1201/9781315364094-121.

  12. Bhavani, T., Satish, T., & Begum, S. (2017). Agriculture productivity enhancement system using IOT. International Journal of Theoretical and Applied Mechanics,12(3), 543–554.

    Google Scholar 

  13. http://raitamitra.kar.nic.in/stat/22.htm. Accessed November, 12 2019.

  14. http://agritech.tnau.ac.in/agriculture/agri_cropharvesting.html. Accessed November 15, 2019.

  15. https://www.biz4intellia.com/blog/5-applications-of-iot-in-agriculture/. Accessed November, 18 2019.

  16. Jirapond, M., Nathaphon, B., Siriwan, K., Narongsak, L., Apirat, W., & Pichetwut, N. (2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture,156, 467–474. https://doi.org/10.1016/j.compag.2018.12.011.

    Article  Google Scholar 

  17. Das, R. K., Manisha, P., & Dash, S. S. (2019). Smart agriculture system in india using internet of things. Springer Nature Singapore Pte Ltd,758, 247–255. https://doi.org/10.1007/978-981-13-0514-6_25.

    Article  Google Scholar 

  18. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International Journal of Recent Technology and Engineering,7(5), 98–102.

    Google Scholar 

  19. Ravindranath, K., Sai Bhargavi, Ch., Samaikya Reddy, K., & Sai Chandana, M. (2019). Cloud of things for smart agriculture. International Journal of Innovative Technology and Exploring Engineering,8(6), 30–33.

    Google Scholar 

  20. Sai Prasanna, G. V., & Vijay Kumar, G. (2019). Controlling and monitoring the plant growth conditions using embedded systems. International Journal of Innovative Technology and Exploring Engineering,8(6), 1552–1555.

    Google Scholar 

  21. Praveen, B., & Patel, J. N. (2019). Determination of soil moisture using various sensors for irrigation water management. International Journal of Innovative Technology and Exploring Engineering,8(7), 557–582.

    Google Scholar 

  22. Dhall, R., & Agrawal, H. (2018). An improved energy efficient duty cycling algorithm for IoT based precision agriculture. Procedia Computer Science,141, 135–142. https://doi.org/10.1016/j.procs.2018.10.159.

    Article  Google Scholar 

  23. Foughali, K., Fathallah, K., & Frihida, A. (2018). Using cloud IOT for disease prevention in precision agriculture. Procedia Computer Science,130, 575–582. https://doi.org/10.1016/j.procs.2018.04.106.

    Article  Google Scholar 

  24. Ashwini, B. V. (2018). A study on smart irrigation system using IoT for surveillance of crop-field. International Journal of Engineering and Technology (UAE),7, 370–373. https://doi.org/10.14419/ijet.v7i4.5.20109.

    Article  Google Scholar 

  25. Anjali, G., Sagar, B., & Shubhangi, K. (2018). A review paper on effective agriculture monitoring system using IOT. International Journal of Modern Trends in Engineering and Research (IJMTER),5(3), 15–17. https://doi.org/10.21884/ijmter.2018.5058.yloga.

    Article  Google Scholar 

  26. Karunakanth, M., Venkatesan, R., Jaspher, W., & Kathrine, G. (2018). IOT based smart irrigation system for home based organic garden. International Journal of Pure and Applied Mathematics,119(12), 16193–16199.

    Google Scholar 

  27. Vanaja, K. J., Suresh, A., Srilatha, S., Vijay Kumar, K., & Bharath, M. (2018). IOT based agriculture system using node MCU. International Research Journal of Engineering and Technology,5(3), 3025–3028.

    Google Scholar 

  28. Karim, F., Fathalah, K., & Frihida, A. (2017). Monitoring system using web of things in precision agriculture. International Conference on Future Networks and Communications,110, 402–409. https://doi.org/10.1016/j.procs.2017.06.083.

    Article  Google Scholar 

  29. Shekhar, Y., Ekta, D., Sourabh, M., & Suresh, S. (2017). Intelligent IoT based automated irrigation system. International Journal of Applied Engineering Research,12(18), 7306–7320.

    Google Scholar 

  30. Srishti, R. (2017). IoT based smart irrigation system. International Journal of Computer Applications,159(8), 7–11. https://doi.org/10.5120/ijca201791300.

    Article  Google Scholar 

  31. Rajeswari, S., Suthendran, K., & Rajakumar, K. (2017). A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. In 2017 international conference on intelligent computing and control (I2C2) (pp. 1–5). IEEE. https://doi.org/10.1109/i2c2.2017.8321902.

  32. Mohanraj, I., Kirthika, A., & Naren, J. (2016). Field monitoring and automation using IOT in agriculture domain. International Conference on Advances in Computing & Communications,93, 931–939. https://doi.org/10.1016/j.procs.2016.07.275.

    Article  Google Scholar 

  33. Kumar, M. S., Chandra, T. R., Kumar, D., Manikandan, M. S. (2016). Monitoring moisture of soil using low cost homemade soil moisture sensor and Arduino UNO. In 2016 3rd international conference on advanced computing and communication systems (ICACCS) (Vol. 01) (pp. 1–4). https://doi.org/10.1109/icaccs.2016.7586312.

  34. Manikandan, K., & Vijayarajan, V. (2016). Framework for agriculture automation using wireless sensor networks. International Journal of Advanced Research in Computer Science,7(4), 81–84.

    Google Scholar 

  35. Ahmed, K., Ahmed, A., Kumar, Y. (2016). Design and implementation of a cloud-based IoT scheme for precision agriculture. In International conference on microelectronics (ICM) (pp. 201–204). IEEE. https://doi.org/10.1109/icm.2016.7847850.

  36. Lavanya, G., Rani, C., & Ganeshkumar, P. (2019). An automated low cost IoT based fertilizer intimation system for smart agriculture. Sustainable Computing: Informatics and Systems,1, 1. https://doi.org/10.1016/j.suscom.2019.01.002.

    Article  Google Scholar 

  37. Alahi, M. E. E., Xie, L., Mukhopadhyay, S., & Burkitt, L. (2017). A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Transactions on Industrial Electronics,64(9), 7333–7341. https://doi.org/10.1109/TIE.2017.2696508.

    Article  Google Scholar 

  38. Badhe, A., Kharadkar, S., Ware, R., Kamble, P., & Chavan, S. (2018). IOT based smart agriculture and soil nutrient detection system. International Journal on Future Revolution in Computer Science & Communication Engineering,4(4), 774–777.

    Google Scholar 

  39. Raut, R., Varma, H., Mulla, C., & Pawar, V. R. (2018). Soil monitoring, fertigation, and irrigation system using IoT for agricultural application. In Y. C. Hu, S. Tiwari, & K. Mishra (Eds.), Trivedi intelligent communication and computational technologies. Lecture notes in networks and systems (Vol. 19). Singapore: Springer. https://doi.org/10.1007/978-981-10-5523-2_7.

  40. Fenila Naomi, J., Theepavishal, R. A., Madhuaravindh, K. S., & Tharuneshwar, V. (2019). Soil quality analysis and an efficient irrigation system using agro-sensors. International Journal of Engineering and Advanced Technology (IJEAT),8(5), 703–706.

    Google Scholar 

  41. Mekala, M. S., & Viswanathan, P. (2019). (t, n): Sensor Stipulation with THAM index for smart agriculture decision-making IoT system. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06964-0.

    Article  Google Scholar 

  42. Emerging Agriculture Technologies. https://www.ayokasystems.com/news/emerging-agriculture-technologies/. Accessed April 05, 2019.

  43. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of internet of things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of Things Journal,5(5), 3758–3773. https://doi.org/10.1109/JIOT.2018.2844296.

    Article  Google Scholar 

  44. Li, S., Simonian, A., & Chin, B. A. (2010). Sensors for agriculture and the food industry. The Electrochemical Society Interface,19(4), 41–46. https://doi.org/10.1149/2.F05104.

    Article  Google Scholar 

  45. http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-arduino/. Accessed November 5, 2019.

  46. https://artofcircuits.com/product/fc-28-soil-moisture-sensor-analog-and-digital-outputs. Accessed November 8 2019.

  47. http://www.alselectro.com/ph-sensor.html. Accessed November 10, 2019.

  48. https://www.aliexpress.com/i/4000243250357.html. Accessed November 28, 2019.

  49. Ponraj, A. S., & Vigneswaran, T. (2019). Machine learning approach for agricultural IoT. International Journal of Recent Technology and Engineering,7(6), 383–392.

    Google Scholar 

  50. https://www.elprocus.com/different-types-of-microcontroller-boards/. Accessed February 12, 2019.

  51. Singh, P., & Sanghamitra, S. (2016). Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 Wi-Fi module. In IEEE region 10 humanitarian technology conference (R10-HTC) (pp. 1–4). IEEE. https://doi.org/10.1109/r10-htc.2016.7906792.

  52. Pawar, S. B., Rajput, P., & Shaikh, A. (2018). Smart irrigation system using IOT and raspberry pi. International Research Journal of Engineering and Technology,5(8), 1163–1166.

    Google Scholar 

  53. Anushree, M. K., & Krishna, R. (2018). A smart farming system using Arduino based technology. International Journal of advanced Research, Ideas and Innovations In Technology,4(4), 850–856.

    Google Scholar 

  54. Sushma, M. G., & Snehal, M. G. (2014). Design of ARM based embedded web server for agricultural application. International Journal of Computer Science and Information Technologies,5(1), 354–356.

    Google Scholar 

  55. Pawar, M., & Chillarge, G. (2018). Soil toxicity prediction and recommendation system using data mining in precision agriculture. In 2018 3rd international conference for convergence in technology (I2CT) (pp. 1–5). IEEE. https://doi.org/10.1109/i2ct.2018.8529754.

  56. https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-food. Accessed November 20, 2019.

  57. Raikar, M. M., Desai, P., Kanthi, N., & Bawoor, S. (2018). Blend of cloud and internet of things (IoT) in agriculture sector using lightweight protocol. In 2018 international conference on advances in computing, communications and informatics (ICACCI) (pp. 185–190). IEEE. https://doi.org/10.1109/icacci.2018.8554406.

  58. Ramson, S. J., Bhavanam, D., Draksharam, S., Moni, D. J., & Kirubaraj, A. A. (2018). Sensor networks based water quality monitoring systems for intensive fish culture—A review. In 2018 4th international conference on devices, circuits and systems (ICDCS) (pp. 54–57). IEEE. https://doi.org/10.1109/icdcsyst.2018.8605146.

  59. Sri, B. D., Nirosha, K., Priyanka, P., & Dhanalaxmi, B. (2017). GSM based fish monitoring system using IOT. International Journal of Mechanical Engineering and Technology, 8(7), 1094–1101.

    Google Scholar 

  60. Chiang, C.-T., Yen-Kuei, L., & Lin, L.-T. (2017). A CMOS fish spoilage detector for IoT applications of fish markets. IEEE Sensors Journal,18(1), 375–381. https://doi.org/10.1109/JSEN.2017.2770222.

    Article  Google Scholar 

  61. Raju, K. R. S. R., & Varma, G. H. K. (2017). Knowledge based real time monitoring system for aquaculture using IoT. In 2017 IEEE 7th international advance computing conference (IACC) (pp. 318–321). IEEE. https://doi.org/10.1109/iacc.2017.0075.

  62. Valiente, F. L., Garcia, R. G., Domingo, E. J. A., Estante, S. M. T., Ochaves, E. J. L., et al. (2018). Internet of things (IOT)-based mobile application for monitoring of automated aquaponics system. In 2018 IEEE 10th international conference on humanoid, nanotechnology, information technology, communication and control, environment and management (HNICEM) (pp. 1–6). IEEE. https://doi.org/10.1109/hnicem.2018.8666439.

  63. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE communications surveys & tutorials,17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095.

    Article  Google Scholar 

  64. Kais, M., Eddy, B., Chaxel, F., & Fernand, M. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, Elsevier,5, 1–7. https://doi.org/10.1016/j.icte.2017.12.005.

    Article  Google Scholar 

  65. Bhuvaneswari, V., & Porkodi, R. (2014). The internet of things (IoT) applications and communication enabling technology standards: An overview. International Conference on Intelligent Computing Applications. https://doi.org/10.1109/ICICA.2014.73.

    Article  Google Scholar 

  66. Mahmoud, E., Shahrestani, S., & Cheung, H. (2016). Emerging wireless technologies in the internet of things: A comparative study. International Journal of Wireless & Mobile Networks (IJWMN),8(5), 67–82. https://doi.org/10.5121/ijwmn.2016.8505.

    Article  Google Scholar 

  67. Rashmi, S. S., Wei, Y., & Hwang, S.-H. (2017). A survey on LPWA technology: LoRa and NB-IoT. ICT Express,3, 14–21. https://doi.org/10.1016/j.icte.2017.03.004.

    Article  Google Scholar 

  68. Lee, J.-S., Chuang, C.-C., Shen, C.-C. (2009). Applications of short-range wireless technologies to industrial automation: A ZigBee approach. In Advanced international conference on telecommunications. IEEE Computer Society (pp. 15–20). https://doi.org/10.1109/aict.2009.9.

  69. Ray, P. P. (2016). A survey of IoT cloud platforms. Future Computing and Informatics Journal,1, 35–46. https://doi.org/10.1016/j.fcij.2017.02.001.

    Article  Google Scholar 

  70. Ray, P. P. (2018). A survey on internet of things architectures. Computer and Information Sciences,30, 291–319. https://doi.org/10.1016/j.jksuci.2016.10.003.

    Article  Google Scholar 

  71. Nakhuva, B., & Champaneria, T. (2015). Study of various internet of things platforms. International Journal of Computer Science & Engineering Survey,6(6), 61–74. https://doi.org/10.5121/ijcses.2015.6605.

    Article  Google Scholar 

  72. https://www.quora.com/What-is-IoT-architecture/. Accessed March 5, 2019.

  73. Mekala, M. S., Viswanathan, P. (2017). A survey: Smart agriculture IoT with cloud computing. In 2017 international conference on microelectronic devices, circuits and systems (ICMDCS) (pp. 1–7). https://doi.org/10.1109/icmdcs.2017.8211551.

  74. Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2019). Internet of things applications: A systematic review. Computer Networks,148, 241–261. https://doi.org/10.1016/j.comnet.2018.12.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lova Raju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lova Raju, K., Vijayaraghavan, V. IoT Technologies in Agricultural Environment: A Survey. Wireless Pers Commun 113, 2415–2446 (2020). https://doi.org/10.1007/s11277-020-07334-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07334-x

Keywords

Navigation