Skip to main content
Log in

Optical Code Construction Based on Enhanced Quantum Logic Gate (EQLG) Technique for Spectral Amplitude Coding Optical CDMA Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spectral Amplitude Coding Optical Code Division Multiple Access (SAC–OCDMA) is an auspicious advancement in an asynchronous environments. In this paper, we have presented an effective Enhanced Quantum Logic Gate (EQLG) code for SAC–OCDMA to improve the code construction, cross-correlation and minimize the noises. The EQLG code contains unitary matrices with minimum overlaps in code spectral wavelengths of various clients. This drops the Multiple Access Interference (MAI) and furthermore EQLG code, provides high data-rate transmission in networks. The development of the proposed EQLG code is depicted in following strides as; at first build a matrix utilizing the estimation of the weight value and the number of subscribers. Based upon that, the number of rows and columns are located in the matrix. Second, each diagonal sequences are computed by using the QLG method. The execution of the recommended EQLG code will be analysed with existing SAC–OCDMA systems in response to Bit Error Rate (BER). The simulations of encoding with 10–60 users with 622 Mb/s data transmission at a BER of 10−9 have been successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig..1
Fig..2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nordin, J. M., Aljunid, S. A., Fadhil, H. A., Anuar, M. S., Abdullah, A. R. A. J., Rahim, R. A., & Ahmed, R. B., (2012). Development and performance of a new SAC optical CDMA code with in phase cross correlation. IJCSNS,12(12), 101.

    Google Scholar 

  2. Kaur, N., Goyal, R., & Rani, M. (2017). A review on spectral amplitude coding optical code division multiple access. Journal of Optical Communications,38(1), 77–85.

    Google Scholar 

  3. Singh, K., Singh, K., & Devra, S. (2017). OCDMA & its applications in fiber optics communication networks. Indian Journal of Science and Technology,10, 31.

    Google Scholar 

  4. Abraham, N., & Parakh, A. (2016). Various architecture for detection of information using SAC–OCDMA for FTTH system. In International conference on next generation intelligent systems (ICNGIS) (pp. 1–6). IEEE.

  5. Liu, M.-Y., Wang, T.-L., & Tseng, S.-M. (2017). Throughput performance analysis of asynchronous optical CDMA networks with channel load sensing protocol. IEEE Photonics Journal,9, 1–13.

    Google Scholar 

  6. Fathallah, H., Bentrcia, A., & Seleem, H. (2014). Efficient interference cancellation detector for asynchronous upstream optical code division multiple access-passive optical network with mixed Poisson-Gaussian noise. IET Communications,8(13), 2393–2403.

    Article  Google Scholar 

  7. Bouarfa, A., Kandouci, M., & Djellab, H. (2017). A new MIHP code using direct detection for SAC–OCDMA system. International Journal on Electrical Engineering and Informatics,9(4), 825–833.

    Article  Google Scholar 

  8. Rashidi, C. B. M., Aljunid, S. A., Anuar, M. S., & Ahmed, H. Y. (2015). IP routing by phase induced intensity noise suppression in Optical CDMA network. American Journal of Networks and Communications,4, 18–21.

    Article  Google Scholar 

  9. Seyedzadeh, S., Moghaddasi, M., & Anas, S. B. A. (2016). Variable-weight optical code division multiple access system using different detection schemes. Journal of Telecommunications and Information Technology,3, 50–59.

    Google Scholar 

  10. Abd, T. H., Aljunid, S. A., Fadhil, H. A., Ahmad, R. B., & Junita, M. N. (2012). Enhancement of performance of a hybrid SAC–OCDMA system using dynamic cyclic shift code. Ukrainian Journal of Physical Optics,13, 12–27.

    Article  Google Scholar 

  11. Ahmed, H. Y., & Nisar, K. S. (2013). Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access. Optical Fiber Technology,19(4), 35–347.

    Article  Google Scholar 

  12. Sharma, T., & Maddila, R. K. (2019). Performance characteristics of the spectral-amplitude-coding optical CDMA system based on one-dimensional optical codes and a multi-array laser. Ukraine Journal of Physical Optics20(2), 81.

  13. Abd, T. H., Aljunid, S. A., Fadhil, H. A., Ahmad, R. A., & Saad, N. M. (2011). Development of a new code family based on SAC–OCDMA system with large cardinality for OCDMA network. Optical Fiber Technology,17(4), 273–280.

    Article  Google Scholar 

  14. Abd, T. H., Alijunaid, S. A., Fadhil, H. A., Ahmad, R. A., & Saad, N. M. (2011). Development of a new code family based on SAC–OCDMA system with large cardinality for OCDMA networks. Journal of optical fiber technology,17, 273–280.

    Article  Google Scholar 

  15. Tseng, S. P. (2015). Modified multiphotodiode balanced detection technique for improving SAC–OCDMA networks. Journal of Optics Communications,344, 38–42.

    Article  Google Scholar 

  16. Noshad, M. (2010). KambizJamshidi Code family for modified spectral amplitude coding OCDMA system and performance analysis. Journal of Optical Communication Networks,2, 344–354.

    Article  Google Scholar 

  17. Abd, T. H., Aljunid, S. A., Hilal Adnan Fadhil, M. N. J., & Saad, N. M. (2012). Modelling and simulation of a 1.6 Tb/s optical system based on multi-diagonal code and optical code-division multiple access. Ukrainian Journal of Physical Optics,13(2), 54–66.

    Article  Google Scholar 

  18. Panda, S. (2017). Effect of SHIFTZCC codes for optical CDMA system. World scientific news,2(67), 365–389.

    Google Scholar 

  19. Memon, A. L., Khuda, B., & Asif, A. S. (2014). SNR and BER models and the simulation for BER performance of selected spectral amplitude codes for OCDMA. Mehran University Research Journal of Engineering and Technology,33(1), 103–112.

    Google Scholar 

  20. Kumawat, S., & Kumar, M. R. (2016). Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC–OCDMA systems. Optical Fiber Technology30, 72–80.

    Article  Google Scholar 

  21. Mostafa, S., Abd El-Naser, A. M., Abd El-Samie, F. E., & Rashed, A. N. Z. (2017). Performance evaluation of SAC–OCDMA system in free space optics and optical fiber system based on different types of codes. Wireless Personal Communications,96(2), 2843–2861.

    Article  Google Scholar 

  22. Jellali, N., Monia, N., Moez, F., & Houria, R. (2017). Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system. Optical Fiber Technology,36, 26–32.

    Article  Google Scholar 

  23. Moghaddasi, M., Saleh, S., Ivan, G., Gandham, L., Siti, B., & Ahmad, A. (2017). DW-ZCC code based on SAC–OCDMA deploying multi-wavelength laser source for wireless optical networks. Optical and Quantum Electronics,49(12), 393.

    Article  Google Scholar 

  24. El-Mottaleb, S. A., et al. (2019). An efficient SAC–OCDMA system using three different codes with two different detection techniques for maximum allowable users. Optical and Quantum Electronics,51(11), 354.

    Article  Google Scholar 

  25. Wei, Z., Shalaby, H. M. H., & Ghafouri-Shiraz, H. (2001). Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems. Journal of Lightwave Technology,19(9), 1274–1281.

    Article  Google Scholar 

  26. Tsujioka, T. (2008). Design of strict variable-weight optical orthogonal codes for differentiated quality of service in optical CDMA networks. Computer Networks,52(10), 2077–2086.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teena Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Kumar Maddila, R. Optical Code Construction Based on Enhanced Quantum Logic Gate (EQLG) Technique for Spectral Amplitude Coding Optical CDMA Systems. Wireless Pers Commun 113, 2587–2609 (2020). https://doi.org/10.1007/s11277-020-07342-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07342-x

Keywords

Navigation